
AcomC/C++

Acornl

AcornC/C++

Acornl

ii

Copyright <D 1994 Acorn Computers Li mitcd. All rights reserved

Published by Acorn Computers Technical Publications Department

No part of Lhi s publication may be reproduced or transmitted. in any form or by
any means. elect ronic, mechanical. photocopying, recording or otherw ise. or
stored in any retrieva l system of any nature. without the written permission of the
copyright holder and the publisher. application for which sha ll be made to the
publisher

The product described in this manual is not intended for use as a critical
component in life support devices or any system in which failure could be expected
to result in personal injury.

The product described in this manua l is subject to continuous development and
improvement. Al l information of a technica l nature and particu lars of the product
and its use (including the information and particulars in this manual) are given by
Acorn Computers Limited in good faith. However. Acorn Computers Limited
cannot accept any liability for any loss or damage arising from the usc of any
information or particulars in this manual

If you have any comments on this manual. please complete the form at the back of
the manual and send it to the address given there.

Acorn supplies its products th rough an international distribution network Your
supplier is available to help resolve any queries you might have.

ACORN. the ACORN logo, ARCHIMEDES and ECONET are trademarks of Acorn
Computers Limited.

UNIX is a trademark of X/Open Company Ltd.

All other trademarks are acknowledged.

Published by Acorn Computers Limited
ISBN I 85250 166 9
Part number 0484.232
Issue I. December I 994

Contents

Contents iii

Introduction 1
Installation of Acorn Desktop C
The C compiler 2
The C++ translator 2
This user guide 2
U sefu I references 6

Part 1 - Using the C tools 9

CC and C++ 11
The underlying programs 11
Getting started with CC and C++ 12
Libraries 14
File naming and placing conventions 15
Include file searching 18
The SetUp dialogue box 22
The SetUp menu 25

Output messages 40
The icon bar menu 41
Command lines 42
Worked examples 47

iii

Contents

iv

CMHG 51
Starting CMHG 52
The icon bar menu 53
Example output 53
Command line interface 54

ToANSI 55
ToANSI C translation 56
Starting ToANSI 57
The 1con bar menu 58
Example output 58
Command line interface 59

ToPCC 61
ToPCC C translation 62
Starting ToPCC 63
The icon bar menu 64
Example output 65
Command line interface 66

Part 2 - C language issues 67

C implementation details 69

Implementation details 70
ldenli fiers 70
Data elements 70
Structured data types 73
Pointers 74

Anthmetic operations 74
Expression evaluation 75
Implementation limits 76

Standard implementation definition 77
Translati on (A.6.3.1) 77
Environment (A.6.'3.2) 77
Identifiers (A.6 3.3) 78
Characters (A 6 3 4) 78
Integers (A 6 3 5) 80
Floating point (A 6 3 6) 80
Arrays and pointers (A.6.3.7) 80
Registers (A 6.3 8) 81
Structures. unions. enumerations and bitfields (A.6.3 9) 81
Qualifiers (A.6.3.1 OJ 82
Declarators (A.6.3. I I) 82
Statements (A.6 3. 121 82
Preprocessing directives (A.6 3.13 l 82
Libraryfunctions(A6314) 82

Extra features 86
#pragma directives 86
Special function declaration keywords 89
Special variable declaration keywords 90

Contents

v

Contents

vi

The C library 91
assert h 92
ctype h 93

errno h 94
noat h 95

limits h 96
locale h 97
math.h 99

setjmph 100
signa l.h 101
stdarg.h 103
stddef.h 105
std io.h 106
std lib.h 121
string.h 131
time.h 1'37

The ANSI library 141
Extra functions 142

The Event library 143
Introduction 143
Registering and deregistering event handlers 143
Registering and deregistering message handlers 144
Quitting applications I 44
Programmer interface 144
Initialisation 145
Polling 146
Registering handlers 147
Handlers 149
Example I 50

The Wimp library 153
Programmer interface I 54

The Toolbox library 167

The Render library 169

Part 3 - C++ language issues 171

C++ implementation details 173
Translation Limits 173

Identifiers (2.3) 174

Character Constants (2.5 .2) I 74

Floating Constants (2.5.3) 174

String Literals (2.5.4) 175

Start and Termination (3.4) 175

Fundamentall}lpes (3.6.1) 175
Integral Conversions (4.2) 176

Expressions (5) 176

Function Call (5.2.2) 176

Explicit l}lpe Conversion (5 41 177

Multiplicative Operators (5 61 177

Sh ift Operators (5.8) 177

Relationa l Operators (5.9) 177

Storage Class Specifiers (7.1. 1) 178

l}lpe Speci fiers (7.1 6) 178

Asm Declarations (7.3) 178

Linkage Specifications (7.4) 178

Class Members (9.2) 179

Bitfields (9 6) 179

Multiple Base Classes (I 0.1) 179

Argument Matching (1 3. 2) 180

Exception Handl ing (experimenta l) (15) 180
Predefined Names (16 10) 180

Contents

vii

Contents

viii

The Streams library 181
Introduction 182

filebuf 1~7

fstream 191
lOS 19'5
istrearn 206

manipulators 213
ostream 217

stdiobuf 223
st reambuf- protected 224
strcambuf- public 232
st rstrcam 237
st rslrcambuf 2110

The Complex Math library 243
Introduct ion 244
cartesian/polar 24'5
complex_error 24 7
exp. log. pow. sqrt 2'50
complex operators 252
cplxtrig 2'5'5

Part 4 - Developing software for RISC OS 257

Portability 259
General portability considerations 259
ANSI C vs K&R C 262
The ToPCC and ToANSI tools 266
pee compatibil ity mode 266
Environmenta l aspects 270

Assembly language interface 273
Register names 274
Register usage 274
Control arrival 27'5
Passing arguments 275
Return link 276
Structure results 276
Storage of variables 277
Funcrion workspace 277
Fxarnples 277

Ul ... IIJ111111t,..._.,.1111'llll81tl1811JUIIt88111111!~UaUil'lll"'llllllll llltllllllll!ll 8111111B1111111111t11BIIt.B1111Bitllllllllt'III'R!III'III"ItiiVI!l:!'lll"'llllltlllllllllt'III"F ... 1111Itllll:SIIII IIIII Ill IIIII 1111 1111 1111 1111 IIIII -ZI& IIIIVIIIIIo;;;;

How to write relocatable modules in C 279
Getting started 279
Conslrainls on modules wrillen in C 280

Overview of modules written inC 280
Functional components of modules written in C 280

Overlays 295
Paging vs overlays 295
When to use overlays 296

Part 5 -Appendixes 299

Changes to the C compiler 301

C errors and warnings 303
Interpreting CC errors and warnings 303
Warnings 304
Non-serious errors 312
Serious errors 322
Fatal errors 337
System errors 338

C++ errors and warnings 339
'Not implemented' messages 339

C function index 357

C++ class index 361

Index 365

Contents

ix

X

1 Introduction
................. . ---------------------·- ..

A corn C/C++ is a development envi ronment for producing RISC OS desktop
./"\. applications and relocatable modules written in ANSI C and/or in C++. It
consists of a number o f programming tools which are RISC OS desktop
applications. These tools interact in ways designed to help your productivity.
forming an extendable envi ronment integrated by the RISC OS desktop.
Acorn CIC++ may be used with Acorn Assembler (a part o f th is product) to provide
an environment for mixed C, C++ and assembler development.

Acorn C/C++ includes tools to:

• ed it program source and other text files

• search and examine text files

• convert C source and header text between ANSI and UNIX d ialects

• examine some binary files

• compile and link C programs

• compile and link C++ programs

• construct relocatable modules entirely from Cor C++

• compi le and construct programs under the control of makefiles. these being
set up from a simple desktop interface

• squeeze finished program images to occupy less disk space

• construct l inkable libraries

• debug RISC OS desktop app lications interactively

• design RISC OS desktop interfaces and test their fu nctionality

• use the Toolbox to interact with those interfaces.

Most of the tools in th is product are also of genera l use for constructing
applications in other programm ing languages, such as ARM Assembler. These
non-language-specific tools are described in the accompanying Desktop Tools guide.

Installation of Acorn Desktop C

Installation of Acorn C/C++ is described in the chapter In stalling Acorn CIC++ on
page 7 of the accompanying Desktop Tools guide.

1

The C compiler

The C compiler

The Acorn C compiler for RISC OS (the tool CC supplied as a part of this product)
is a full implementation of Cas defined by the 1989 ANSI language standard. To
obtain this standard document. see the c;ection Useful refmnces on page 6 It is
tested with the Plum-Hall C Validation Suite version 2 00. and passes all sections
except for failing to produce two required diagnostic messages. as described in the
release note accompanying this user gu ide.

The C++ translator

This user guide

2

The C++ translator for RISC OS (the tool C++ supplied as a part of this product I is
a port of Release 3.0 of AT& T's CFront product.

This gu ide is a reference manual for the C tools CC. C++ CMHG ToANSI and
ToPCC working as part of the development environment of Acorn C/C++ These are
the only tools in this product which are not used for programming in other
languages. and already described in the accompanying Desktop Tools guide This
manual also documents the C and C++ I ibrary support provided and other aspects
that are particulor to thi s C product:

• special features of this implementation of the C and C++ languages

• operating the Acorn C/C++ tools specific to the C and C++ languages

• developing programs for the RISC OS environment

• Portability issues, including the portable C compiler (pee) facility

• Desktop applications

• Rclocatable modules

• Overlays

• Calling other programs and languages from C

This guide is not intended as an introduction to Cor C++. and does not teach Cor
C 1 1 programming; nor is it a reference manual for the ANSI C standard. Both these
needs are addressed by publications listed in the section Use[tll re[ere11ces on page 6

Introduction

This guide is o rganised into parts:

Parr I - Using tf1e C tools

Parr 2- C language issues

Parr 3- C++ language issues

Part 4 - Drveloping software {or RISC OS

Part 5- Appendixes

Part 1 - Using the C tools

This part of the guide describes t he operation of the programming tools specific
to C The first chapter describes the interaction of the C tools with the rest of the
development environment; each of the remaining chapters is devoted to an
individual tool. Examples in the text and on disc are used to il lustrate severa l
points

The chapters arc:

• CC and C++

e CMHC

e ToANSI

e ToPCC

Part 2 - C language issues

This covers issues to do with the C programming language itself. in particular
those parts of the ANSI standard that are necessarily machine- o r operating
system-specific

The chapters are:

• C implementation details

How Acorn C implements those aspects of the language which ANSI leaves to
the discretion of the implementor; and how Acorn C behaves in those areas
covered by Appendix A.6 of the draft standard (which li sts those aspects which
the standard requires each implementation to define).

3

This user guide

• Tfu• C library

This chapter works through the headers of the C library. (assert . h to
time. h). outlining the contents of each one

• fu net ion prototypes

• macro. type and structure definitions
• constant declarations.

e The ANSI library

This chapter details the ANSI library. a superset of the C library that provides
additional features useful in debugging and profiling your software

• Tfu• En'lll library

This chapter details the Event library, which provides calls for you to more
easily dispatch Toolbox and Wimp events within Toolbox based appl ica ti ons

• The Wimp librarw
This chapter documents the Wimp library. which provides a set ot C veneers
onto the Wimp (or Window Manager) SWI interface

• Tf1e Toolbox library
Th1s chapter documents the Toolbox library. which provides a set of C veneers
onto the Toolbox SWis.

• Tf1t> Re,1der li/1rary

This chapter documents the Render library, which provides a set of C veneers
onto the DrawFi lc SWis. used to render Draw fi les.

Part 3 - C++ language issues

4

This covers issues to do with the C++ programming language. such as detCJils of its
implementation and of the libraries supplied with it

• C++ irnplernenlalion details
This chapter describes implementation specific behaviour of Acorn C++

• Tile Streams library
This chapter describes the C++ Streams library, giving a synopsis (including
prototypes) and a descript ion of each avai lable interface.

• The Complex Matf1 library
This chapter describes the C++ Complex Math library, giving a synopsis
(including prototypes) and a description of each available interface

Introduction

Part 4 - Developing software for RISC OS

This part of the Guide tells you how to write software inC for the RISC OS
environment. Examples in the text and on disc are used to il lustrate each type of
program development It also includes a chapter on portabil ity to help with porting
applications inC to and from RISC OS.

The chapters are:

• Portability
The chapter covers

• portabi lity considerations in general

• the ma jor d ifferences between ANSI and 'K&R' C

• using the pee compatibility mode of the Acorn compiler

• standard headers and libraries

• environmenla l aspecls of portability.

• Assembly /angLwge interface

How to handle procedure entry and exit in assembly language, so that you can
write programs which interface correctly with the code produced by the C
compiler

• llow to write relocatable modLdes in C

Relocatable modules- the building blocks of the RISC OS operating system ­
are needed for device drivers and simi lar low-level software.

• Overlays
This chapter explains how to write an application using overlays. wilh a worked
example as an illustration.

Part 5 -Appendixes

The appendixes are:

• Changes to the C compiler
Th is is the fifth release of the C compiler product for Acorn computers running
the RISC OS operating system. The appendix high l ights all those features that
are new since the previous release (Acorn Desktop C)

• C errors and warnings
Messages produced by the compi ler. of varying degrees of severity.

• C++ errors and warnings
Messages produced by the translator. of varying degrees of severity.

5

Useful references

Conventions used

Throughout this Guide. a fixed-width font is used for text that the user should type.
with an italic version representing classes of item that would be replaced in the
command by actual objects of the appropriate type For example·

cc options filenames

This means that you type cc exactly as ~hown. and replace options and
filenames by specific examples

Where it is necessary to differentiate between text you type, an<.lt hdt out put by the
computer, your input is shown in bold, and the computer's re~ponsc in a normal
weight.

Useful references

6

C programming
• llarbison. S P and Steele. G L. (19841 A C Reference Manual. (second edition)

Pren lice-Ha II , Englewood Cliffs N I. USA ISBN 0-13-1 09802 0

This is a very thorough reference guide to C. including cJ U!->eful amount of
Information on the ANSI C standard

Smce the Acorn C compiler is an ANSI compiler. th1s book is particularly
relevant. but you must get the second edition for coverage of the ANSI
'>limdard

• Kernighan. B Wand Ritchie. D M. tl988) Tfte C Programmi119 l.allgtta9t' tsecond
edition) Prentice-Hall. Englewood Cliffs. Nl. USA ISBN 0-11-110362-8

This is the original C 'bible', updated to cover the essentials of ANSI C too

• Koenig. A. (1989) C Traps and Pil{alls. Addison-Wesley, Reading, Mass. USA.
ISHN 0-201-17928-8.

This book explains how to avoid the most common trap~ and pitfa ll s that
ensnare even the most experienced C programmers II provides informative
reading at a II levels.

Introduction

•• ** •• ······-·-······--------· · ... -~-----IIIC:--IC\I·----!!!!!""-

C++ Programming

• Stroustrup, B. (1991) The C++ Programming La11guage. (second edition) .
Addison-Wesley. Reading. Mass. USA. ISBN 0-201-53992-6

The standard book describing the C++ language. including a complete copy of
the Reference Manual.

• Ellis, A and Stroustrup, B. (1990) The Annotated C++ Reference Manual.

RISC OS

Addison-Wesley. Reading. Mass. USA. ISBN 0-201-51459-1.

The origina l Reference Manual. used as an ANSI base document. with
additiona l annotations and commentary sections.

• The User Guide supplied with your compuler, which describes how to use the
RISC OS operating system and the applications Edit. Paint and Draw.

• The RISC OS 3 Programmer's Reference Manual.

e The RJSC OS 3 Style CLtide.

The ANSI C standard

The J\merican National Standard for Information Systems- Programming Language Cis
available with the reference number ANSI X3. 159- 1989 for £45 .00 from

British Standards Institution
Foreign Sales Department
Linford Wood
Millon Keynes
MKI4 6LE

Members of the BSI can order copies by telephone; non-members shou ld send a
cheque payable to BSI.

llowever. you shou ld find the coverage of ANSI C in this manua l and the books
listed above adequate for all but the most demanding requirements.

The ANSI C++ standard

At the time of going to press, the ANSI standard for C++ was not yet published­
but it is unlikely to deviate significantly from Tfie Annotated C++ Reference Manual
referred to above.

7

8

.................... ----------··--,

Part 1 - Using the C tools

9

~·····-------------- --. ··-··------. -----·--------···

10

2 CC and C++

CC is a desktop tool which provides an easy interface to the CC and I ink
programs that Acorn C/C++ installs in your computer's library It constructs

command lines and passes them to these programs Likewise. C++ is a desktop
tool that constructs command lines for the CC. CFront and Link programs in the
library.

Because these two desktop tools are so similar. and share the underlying CC and
l.ink programs. we describe them in the same chapter. Most of the rest of this
chapter covers th e CC and C++ options. and gives some programming examples.

If you are new to I~ISC OS and the Acorn CIC++ product. read the whole of this
chapter before sta rting to use Acorn C/C++. If you are an experienced Cor C++
programmer. you will find this chapter essential for reference, and may choose to
tackle the section Worked examples on page 4 7 first.

The underlying programs

The CC compiler is a full implementation of ANSI Cas described in the chapter
ltJtroductroll on page I It consists of a preprocessor and a code generator. it
processes text files containing the source and headers of programs into linkable
object files .

The Link program combines these object files to produce executable image files.

CFront is a C++ translator; it is a port of Release '3 0 of AT&T's CFront product. It
converts C++ source code to C source code

The characteristics of CC as a language implementation are defin<>d in Part 2-
C languag!! issut?s on page 67. Similar information for C++ is in Part 3 C++ language
issues on page 171.

How the tools use them

The comm<1nd line that the CC tool produces firsl ca lls CC to preprocess and
compi le the source into object files. it then cal ls Link to li nk those object files.

The command line that the C++ tool produces first calls the CC preprocessor in a
special C++ compatible mode: it then calls CFront to convert the resultant source
files to C it then calls CC to compile the C source into object files. again using a
special C+ t compatible mode: it finally calls Link to link those object files

11

GeNing started with CC and C++

A note about Make

The Make tool (see the chapter Make on page 57 of the Desktop Tools guide) can also
construct command lines for the underlying CC. CFront and Link programs. You'll
find it a better tool for managing large projects However. much of what is in this
chapter is relevant . since Make both uses the same underlying programs. and sets
options for those programs with the CC and C++ tools' user interfaces.

Getting started with CC and C++

12

To use the CC or C++ tool. first open the AcornC_C++. Tools directory display,
then double click on !CC or 1C++ as required (You cannot sta rt CC or C++ by
double clicking on a file- the tools own no fil e type unlike. for example. Draw. 1

The tool's icon appears on the icon bar:

c
cc

Clicking Se lect on this icon. or dragging a source fi le from a directory display to
this icon. brings up the SetUp dialogue box. To see this work. open the di rectory
display for Acornc_C++. Examples. and then drag either CBello . c. BelloW
to the CC icon. or C++ Bello. c++. BelloW to the C++ 1con The SetUp dialogue
box appears

. , I cc lf.'l. I C++

Source Pomc C++.Examples.CHelo.c.Heao~ Source~ C++ Examples C++Hello C++.HelloWII

Include I C: I Include I c I
Opttons -- Options

.J Comptle only _jDebug J Compile only _jDebug

J Preprocess only [7 Throwback ;7 Throwbad< - . - -

Cancel II Run I - Cane~ I Run I .

As you have dragged a source file to bring up this dialogue box. its name appears
in the writable Source icon: otherwise this icon wou ld have appeared containing
the name of the last filename entered there. or be empty if there were none.

w;::awu;ar

CCandC++ -
Clicking Menu on the SetUp dialogue box brings up the SetUp menu

t ~ CG i ~'It 'C++ '··
Command line ~ Command line ...
Default path ... De tau It path ...
Keep oomments Define ...
Define .. Undefine ...
Undeline ... Assembler
Debug options ,. Module oode
Profile ../Libraries ...
Assembler Features ...
Module oode Suppress warnings

v Libraries/Work directory ...
Features ,.. Others ...
Suppress warnings .,_

Suppress errors ...
UNIX poe

Errors to file ...
Listing

../Work directory ...
Others ,..

The SetUp dialogue box and menu specify the next compilation to be done. You
start the next job by clicking Select on the Run button on the dialogue box (or on
the Command line menu dialogue box) Clicking Select on the Cancel button
removes the SetUp dia logue box and clears any changes you have just made to the
options settings. leaving them back in the state they were in before you brought up
the SetUp box. The options last until you adjust them again or reload the tool: o r
you can save the options for future use with an item from the main icon menu.

Ensure that the option settings are the defau lts. as in the above pictures. Click on
the Run button to compile either HelloW example with an integral link step. Save
the executable image file produced in the directory above that holding the source.
naming it HelloW. then double click Select on the file's icon to run it. The program
runs. putting a Hello world message in the standard RJSC OS command line
window

r--~n SCSUAHardv.S.AcorroC C++ Examcles. Clielo flelloW Run SCSI :~lh'.S.AcornC C••.E><am.Jll.es C••Beno HolloW
~llo World

r••• 5PACI:. or oltok roous• to oont tn.u• •·• •• SPACE or· c: l ic:" ,.ous• to oont anv•

i -

13

Libraries

Libraries

14

C libraries

There are several libraries provided to support the C compiler

• The stubs for the shared C library

This provides all the standard facilities of the language. as defined by the ANSI
standard document. Code using calls to the shared C library will be portable to
other environments if an ANSI compiler and library <He available for that
environment. See the chapter The C library on page 91

e The ANSI library

The ANSI library is a stand-alone version of the shared C library that contains
a few extra functions useful in debugging and profiling your code. You should
usc it for development only. using the shared C library in any final product. See
the chapter The AN Sl library on page 14 I .

• The l:.vent library

The purpose of the ·events' library is to al low the client to more Ci:lsily dispatch
Toolbox and Wimp events within Toolbox based applications See the chapter
Tlw L.:vent library on page 14 3.

• The Wimp library

This is a low-level library that provides veneers to the Wtmp_ SWI calls you
may use it to interface directly wtth the Window Manager module See the
chapter Tfte Wimp library on page 151. and the RISC OS 3 Programmer's Rl'/mnce
Manual

• The Toolbox library
This library provides veneers onto the Toolbox SWis, both the veneers and the
SWis are described in the accompanying Usrr Jnterfact' Toolbox gutde

C++ libraries

The C-1 +compi ler produces output which uses the ANSI C library (by linking with
the st ubs). A C++ program also needs to link with the C++ I ibrary which is held in
AcornC. C++ .libraries . c++ lib. o. c++lib. This has support functions
such as new and delete. and includes the streams and complex maths libraries.

CCandC++

rw···- . ------
File naming and placing conventions

This section explains the concept of a work directory, and describes the naming
conventions used to identify the different classes of fi le you wi ll come across when
using Acorn C/C++.

Work directory

Both CC and C++ operate in a work ciirector!J. The work directory is where the tools
place all output files that you don't explicitly place yourself by dragging from a
Save As d ialogue box. Th is includes object files to be linked by an integral l ink
step. assembly language output and listing output. The work directory is also a
place where some input source and header files are looked for- see the next
sections for more detai ls.

If you're using Make. the work d irectory is simply the d irectory containing the
makefile contro lling the job.

If you're using the CC or C++ tools. the work directory is formed from the directory
containing the source file. modified by the relative path name speci fied by the
Work directory option on the SetUp menu. The default Work directory SetUp
menu va lue is A.

For example, when compiling the example 'Hello world' C program with the default
Work directory setting:

• The source is in the directory AcornC_C++ . Examples . CHello. c

• The work directory is therefore AcornC_C++. Examples. CHello . c. A. i.e.
AcornC_C++.Examples.CHello.

A typical directory arrangement is:

Makefile !Runlmage
I
~

15

File naming and placing conventions

16

The re~ource files (such as !Run and Res) normally found in an application
directory are not shown above. With directories arranged as above and default
option settings. the work directories for both the Make and the CC/C++ tools are
the same. namely Examples. ! MyApp

Filename conventions

The Acorn C/C++ system. in common with others. uses naming conventions to
identify the classes of file involved in the compilation and linking process Many
systems use conventiona l suffixes for this. For example, the suffix • c denotes C
source files on UNIX and MS-DOS systems. This convention clashes with Acorn's
use of the full-stop character in pathnames. It is more nat ural under Acorn filing
systems to use a prefix convention. e.g. c . foo. where cis the directory contain ing
C source files. and foo is the filename.

llowever. portabi l ity is an increasingly important issue. CC recognises the standard
file naming conventions and performs the appropriate transforma ti ons to
construct valid RlSC OS pathnames The following sections summarise the
conventions for referring to source. include. object and program tiles

Rooted filenames

A filename is rooted if it is

• a RISC OS filename beginning with a'$ or an &'-for example.
$.library.h.baricon &. h .myheader

• a UNIX filename beginning with a'/'- for example:
/library/baricon . h

• an MS-DOS filename beginning with a.,.- for example
\library\baricon.h

Rooted filenames are used by CC as absolute specifications of filenames.
independent of work directories. search paths. etc. l~ooted uNIX or MS-DOS
filenames are converted into the Acorn syntax and prefix forms.

Source files

The CC and C++ tools specify the source fi les to be compiled on the command line
they construct and pass to the underlying programs Dragging a source file to the
CC SetUp dialogue box specifies the file as an absolute rooted filename

Make uses a makefile to specify the source files; their pathnames are normally
given relative to the work directory C source files wi ll be looked for in the
subdirectory c of the work directory To aid portability. a file specified as foo . c in
a makcfile will be looked for in@. c . foo. where@ means the work directory C++
source files are similarly looked for in the subdirectory c++

CCandC++

Include files

The way in which the compiler searches for included files is dealt with in detai l in
the section Include file searching on page 18. Here we describe the issues of naming
header files and how to name them in #include lines in your C and C++ program
source.

Include files are often headers for libra ries, and are incorporated by issuing the
#include directive- dealt with by the preprocessor- at the start of a source file.
For instance. in the C Hellow example

#include <stdio.h>

By convention, header files are placed in subd irectory h. This convention is
followed here. You can use subdirectory h of the work directory for your own
header files, which can be incorporated with a source l ine like:

#include "myfile.h"

Note that both the example filenames stdio. hand myf ile. hare in suffix form
rather than Acorn prefix form. This is because you can make use of Acorn CIC++'s
filename processing to interpret these. leaving program lines which do not need
altering to port them to machines expecting suffixes.

To facil itate the porting of code from UNIX and MS-DOS to RISC OS. UNIX-style
and MS-DOS-style filenames are translated to equ ivalent RISC OS-style filenames.

For example:

but:

•• /include/defs . h
•• \cls\hash . h
includes.h

system .defs

is translated to
is translated to
is t ranslated to

is translated to

~ . include.h . defs

~ . cls . h . hash

h.includes

system.defs

In the same way. the lists of directory names given as arguments to the compiler's
Include and Default path SetUp options (see below) are translated to RISC OS
format before being used, in the rare event that this is necessary.

Object files

If you use the CC or C++ tool to compile a single file with the SetUp dialogue box
option Compile only enabled. you use a standard Save As dialogue box to save the
resu ltant object file Otherwise the object files created by the compiler are instead
stored in the o subdirectory of the work d irectory. Thus the result of compil ing
c. sieve will be found in o. sieve.

17

Include file searching

Program flies

If you haven't enabled the Compile only option on the CC or C++ tool 's SetUp
menu. the tool compi les sources to object riles. and then links them with the C
library stubs to produce an executable program fi le You may find it convenien t to
save this program file in the work directory itself- there is no conventiona l suffix
for these.

Compilation list files

If you enable the Listing option on the CC tool 's SetUp menu. then for each
compiled source file the CC tool creates a compilation listing file in the 1
subdirectory of the work directory. Thus compi l ing c. sieve with Listing enabled
will by default result in the list file l . sieve being created.

The C++ tool docs no t have a Listing opt ion.

Assembly list files

If the CC or C++ tool's SetUp menu option Assembler is enabled. no object code is
generated Instead. an assembly listing of the code is created If only one assembly
listing file is produced. you save it from a standard Save As dialogue box If more
than one is produced these are placed m the subdirectory s of the work directory
Thus compi1 1ng c . sieve with Assembler enabled can result in the assembly
,language files . sieve being created.

Filename validity

The compi ler does not check whether the filenames you give are acceptable­
whether they contain only valid characters and are of acceptable length - this is
done by the fi I i ng system

Include file searching

18

The process of converting text Cor C++ source to linkable object files of binary
code can be seen as a pipeline of several processes. The first stage is preprocessing
the source It is at this stage that the text of header files is brought in at the
position of #include directives in the source text.

The preprocessor- which is used by both the CC and C++ tools - handles
#include directives of two forms:

#include <filename>

or

#include "filename"

CCandC++
em• RE&amrwawwuaua waaa•••••••

You will normally include four types of header file:

• headers for the ANSI parts of the C library

• headers for the non-ANSI parts of the C library

• headers for the other libraries supplied with Acorn CIC++

• headers for your own include files.

A special feature of the Acorn C/C++ system is that the standard ANSI headers are
built into the compi ler, and are used by default . By writing the filename in the
angle bracket form. you indicate that the include file is a system file, and thus
ensure that the compiler looks first in its built-i n filing system. Of the common
types of header above. only the headers for the ANSI parts of the C library should
be referred to as system files in angle brackets. Writing the filename in the double
quote form indicates that the include file is a user file

The headers for the non-ANSI parts of the main C library - kernel, pragmas.
SWis and varargs- are not built in to the compiler: nor are the headers for the
other libraries supplied with Acorn CIC++. However, by default the CC and C++
tools both set the Include icon on their SetUp dialogue box to C:. This makes the
preprocessor use the value of the C$Path system variable to find the headers for
all the libraries supplied in AcornC_C++.Libraries .

You can include headers for other libraries by adding the parent of the h directory
holding them to the Include writable icon on the tool's SetUp dialogue box. The
easiest way to do so is to drag the included directory's icon from a directory display
to the writabl e fi eld.

As mentioned before, you can use the subdirectory h of the work directory for the
last common type of header file- your own header files. which you refer to as user
files with directives such as:

#include "myfile.h"

This is all you need to know for basic use of CC with largely default options. The
rest of this section provides a level of detail useful for reference or studying if you
wish to use CC in a non-standard way.

19

Include file searching

Reference section

20

The way in which the preprocessor looks for included files depends on three
Factors:

• whether the filename is rooted

• whether the filename in the #include directive is between angle brackets<> or
double quotes II II

• use of the Include and Default path SetUp options (including the special
filename :mem).

If a filename is not rooted (as defined earlier) the preprocessor looks for il in a
sequence of directories called the search path

Search path

The order of directories in the search path is as fol lows:

The compiler"s own in-memory filing system.

This is on ly searched for#include <filename> directives when you have
not enabled the SetUp menu·s Default path option.

2 The current place (see the section Nested includes on page 20)

This is only searched for #include "filename" directives

3 Arguments to the SetUp dialogue box's Include opt1on. if used
As noted above. th is is set to c: by default. and so all the directories supplied
1n AcornC C++ . Libraries will be searched

4 The system search path.

• The path given as an argument to the Default path SetUp menu option
(see below). if this is enabled: otherwise

• The va lue of the system variable C$Libroot. 1f this is set. otherwise

e $. Clib.

Nested Includes

The current place is the directory containing the source fi le (Cor C++ source. or
#included header) currently being processed by the compiler. Often. this wil l be
the work directory.

When a file is found relative to an element of the search path, the name of the
directory conta ining that file becomes the new current place When the compiler
has finished processing that file it restores the old current place So at any given
instant. there is a stack of current places corresponding to the stack of nested
#includes

===
CCandC++

¥Ct
For example, suppose the current place is $. i nc lude and the compiler is seeking
the #included fi le "sy s . de f s . h" (or" sys . h . defs". "sys/defs . h " ,etc).
Now suppose this is found as:

$. inc lude . sy s .h.defs .

Then the new cu rrent place becomes$. include. sy s, and files #included by
h. defs. whose names are not rooted. wi ll be sought relative to
$.include. sys.

This is the search rule used by BSD UNIX systems. If you wish, you can disable the
stacking of current places using the SetUp menu option Features with the
argument K, to get the search ru le described origina lly by Kernighan and Ritchie in
The C Programming Language. Then al l non-rooted user includes are sought relative
to the directory containing the source file being compiled.

In all th is. the penu ltimate • c, • c++ and • h components of the path are omitted.
These are logically part of the filename- a filename extension- not logically part
of the directory structure. However, d irectory names other than c, c++. h, o and s
are not so recognised (as fi lename extensions) and are used ·as is'. For example,
the name sys . new. de fs is exactly that: it is not translated to sys . defs . new
and. if it is found. the new part of the name does become part of the new current
path .

Use of :mem

You can use the SetUp menu option Default path to provide your own system
search path. as mentioned in step 4 of the section Search patft above. The
preprocessor wi II then use the argument you give to the Default path option as
the system search path. You will only requ ire th is feature if you use
implementations of the C library other than those provided with the Acorn C
system

Use of the Default path option also prevents a #include <filename>
directive being first searched for in the in-memory fil ing system (see step I of the
section Search path above). It can be reinstated by using the pseudo-fi lename : mem
as an argument to the Default path or Include options. If : mem is included in the
search path in this way, its position in the path is as specified- not necessa rily first
-so you can take complete control over where the compi ler looks for #included
files

21

The SetUp dialogue box

Use of C$Libroot

C$Libroot is an environment variable that you can usc to provide your own
system search path. as shown in step 4 of the section St'ard1 pat/1 above. It is not
needed for normal use of the compiler

If C$Libroot is set. and you have not used the Default path option the
preprocessor will use the variable's value as the system search path . By default.
C$LibrootisnMs~.

To set the value of C$Libroot to. for example, "$.MyLib" . at the command line
type·

*Set C$Libroot $. MyLib

This variable is also used by the Acorn C/C-t +system as the library search path, if
set. With the example given. the compi ler wi ll now look for include files in
$. my lib. h. and for libraries in $. my lib . o

The SetUp dialogue box

22

Clicking Select on the tool's icon bar icon or dragging a source file from a directory
display to this icon brings up the tool's SetUp dialogue box:

J:J~ cc
Source!

Include! C:

Options

0 Compile only _jOebug
.) Preprocess only [7'Throwba<X

-
Cancel II ~n

Source

~~J

I Source!

I lnckJdel

Options

.j Comptle only

""
I

c

_jOe bug

[7 Throwback
,---.,-,-

Cancel_j j RJn I

I
I

This writable icon in the SetUp dialogue box con tains the names ot the source files
to be compiled.

When the SetUp box is obtained by clicking on the tool's main icon, it comes up
with this icon containing its previous selling You c<m thus repeal your previous
compi lation by just clicking on the Run button

lf the SetUp box appears as a result of dragging a source file to the main icon. the
writable Source icon appears containing the new source file name

CCandC++

When the SetUp box appears the Source icon has input focus, and can be edited in
the normal RISC OS fashion. If you select a further source file in a directory display
and drag it to this writable icon, its name is added to a list of those already there.

If you drag pre-compiled or pre-assembled object files to the Source icon, they are
included in the set of object fi les l inked together in an integral link step after the
source files themselves have been compiled to object fi les

Include

This SetUp dialogue box icon adds speci fi ed directories to the list of places which
are searched for #include files. The directories in the Include icon are searched
in the order in which they are given. The path shou ld end with the name of a
directory, with no • h, which is added automatically.

The default setting of Include is to C:. This makes the preprocessor search for
headers in the directories listed in the RISC OS environment va riable C$Path, set
by AcornC_ C++. ! SetPaths. The directories listed are those that hold all the
libraries suppl ied with the product in AcornC_C++ . Libraries

For more details of how to use #include lines and places searched for headers­
both before and after those in this Include list - see the section File naming and
placing conventions on page 15.

Compile only

Th is option switches off or on the linking of object files When enabled. the link
step is not performed. and the tools output object files If you're on ly compi ling
one source file, you drag the object file produced from a Save as dialogue box.
Otherwise. multiple files are saved in the o subd irectory of the work directory.

If not enabled, both CC and C++ instead perform an integra l link step, l inking any
object files produced by compilation to any additional ones dragged to the Source
icon, and library fi les. producing an executable program file You control the saving
of this from a Save as dialogue box.

Compile only is not enabled by defau lt

23

The SetUp dialogue box

24

Preprocess only

Debug

This option is not available for the C++ tool.

If th is option is enabled, on ly the preprocessor phase of the compiler is executed.
The output from the preprocessor is sent to the standard output window. The
standard non-interactive tool output window save facility is useful here to save this
output to a file or SrcEdit window By default. comments are stripped from the
output. but sec the SetUp menu option Keep comments on page 27

Preprocess only IS not enabled by default.

This option switches on or off production of debugging tables. When enabled,
extra information is included in the resu ltant object files and image files which
enables source level debugging of the linked image by the DDT debugger. If lhis
option is disabled, any image file finally produced can only be debugged at
machine level

If you are only compiling the source to object files. you must remember to enable
debugging in the Link tool when you link them If you don·t. you II lose the
debugging information produced by the CC and C++ tools.

Debug is not enabled by default.

Throwback

This option switches editor throwback on or off. When enabled. if the DDEULils
module and SrcEdit are loaded, any compi lation errors cause the editor to di<;play
an error browser. Double clicking Select on an error line in this browser makes the
editor display the source file containing the error. with the offending line
highlighted See the chapter SrcEdit on page 71 of the accompanying Dt>sktop Tools
guide for more details.

Throwback is on by default.

CCandC++

The SetUp menu

Clicking Menu on the SetUp dialogue box brings up the SetUp menu. The CC menu
contains some options not ava ilable on the C++ menu. but the two menus are
otherwise virtually identical:

' · :1'" cc ~.

" t+-+ li-

Command line ... Command line ,..
Default path , Default path ,..
Keep oommeniS Dertne ,..
Define ~ Lin define ,..
Undefine ,., Assembler
Debug options

"'"
Module oode

Profile .f Ubraries ...
Assembler Features ,.
Module oode Suppress warnings

../Ubraries ,. ../Work directory ...
Features

""'
Others "' Suppress warnings,..

Suppress errors ,...

UNIX pee
Errors to file ,...
Usting

../Work directory ,...
Others ,..

The options on this menu are described in the following subsections.

The command line

The Command line item at the top of the SetUp menu leads to a small dialogue
box in which the command line equiva lent of the current SetUp options is
displayed:

t >< ·cc'~~ ~"' .,.. ·u ·-~.,., a
JlCSI::MHa<dy.$Jijlp.!S<rap SctapO.t.xo9a73502 II

~.:=entl .. ~~
Define ,..
Uldefine ,.
Oebugoptoos ,.

Features .,
S.WOSO .,.,ongs ~
Suwcess ... rOfS ..

UNIX p;c
Efl'OtSto~lo "

1 Us~W~o
I.!W011<ditOdO')' ...

I OthefS ~

Oofauk patl1
Cleflne
Uldef.,.
Assembler
Modtle <X>de

..;U,ranes ,..
Foal\l'eS ,

Suppteso wamlngs
of WOri< direc!Ory

._::.:Oifl:_:flf_.:,$__ ~

25

The SetUp menu

Clicking on the Run action button in this dialogue box starts compilation in the
same way as that in the main SetUp box Pressing Return in the writable icon in
this box has the same effect. Before starting compilation from the command l ine
box, you can edit the command l ine textua ll y. al though this is not normally usefu l.

Controlling the preprocessor

26

Default path

The Default path entry on the SetUp menu leads to a writable icon 1n which you
specify a comma ·separated list of directones to be searched for included files

cc ·"" ·'-'i C++
Command ~ne .. ,. ,, Patl1 ·u Command line ,.. -:. Patl1 I
lddllfll. I

l I ... , •. ,.. I I
Keep comments Define ,..
Define .. Undeftne ,..
lktcleflnG ... Assembler
Debug optiOns .. Module code
Profile ./ Ltbranes
Assembler Features ,..
Mod!Aecode Suppress wamngs

./ Libranes/WOOl directory
Features ... Others ,..
Suppress wam10Qs,..
Suppress errors ,..
I.JiliX pee
Errors to tile ...
Listing

./ WOOl directory ...
Others ...

This overrides the system include path with the list of directories. You can specify
the memory file system in the list by using the name : mem (in any case) An
example is:

myhdrs ,:mem, $. pro j . public . hdrs

For more deta ils of the system include path and search ing for include fi les in
genera l. see the section File naming and placing conventions on page I '5

Default path is not enabled by default

CC and C++

Keep comments

This option is not ava ilable for the C++ tool.

When enabled in conjunct ion with Preprocess only, this option retains comments
in preprocessor output.

Keep comments is not enabled by default.

Define

The Define option on the SetUp menu leads to a writable icon in which you can
predefine preprocessor macros·

Command line
Default path
Keep comments

Undehne
Debug options t-

Prollle
Assembler

Module code
./ I.Jbranes r-

Features r-
Suppress wamings r­
Suppress errors r­
UNIX poe
Errors to fi le r-
Usting

./ Work directory r-
Others ,..

Command fine
Default path

Undefioe
Assembler
Module code

./ Libraries
Features
Suppress wamJOQS

./Work directory
Others

You can enter two forms of macro predefinition:

sym=val ue
sym

,.

...

...

,..
,..

These both define sym as a preprocessor macro for the compilation. The two lorms
are equivalent to the lines:

#define sym value
#define sym 1

at the head of the source file.

You can enter multiple symbols as a space-separated list.

Define is not enabled by defau lt.

27

The SetUp menu

28

Undeflne

The Undeflne option on the SetUp menu leads to a writable icon in which you can
undefine preprocessor macros:

cc
Corrrnand line ,..
Default path ,..
Keep oorrrnents
Define ,.. ·- ,.
Debug optiOnS ,..

Sl'mbol 'J
I I

Command •ne ,.
Delault path ,.
Define ,..~-:::-:~----:----=-=,.--,-,

lh ()<•' ••

Assembler
Module code

"'f-----.1...---l

Profile >1 Libraries ,.
Assembler Features ,.
M:xlule oode Suppress warn1ngs

./ l.Jbranes ,... >1 WOI1< directory ,.
Features ,..
Suwress warnings ,..
Suppress errors ,..
UNIX pee
Errors to file ,..
l.Jsbng

>I WOI1< <irectory ,..
Others ,..

You enter the name of the macro concerned. eg

sym

Usc of this option is then equivalent to the l ine

#undef sym

i:lt the head of the source file.

Others ,.

You can enter multiple symbols as a space-separated list.

Undeflne is not enabled by default.

CCandC++

Controlling code generation

Debug options

This option is not available for the C++ tool.

The Debug options option on the SetUp menu leads to a writable item in which
you enter a set of modifier letters:

It li' '!! •CG "" "- .. ,.; .. 1i,

Command line ...
Default path ~

Keep comments
Define ,..
Undetine II- J ~' OPli()fi$, J
i•$,]1!.Q.m.l.p ,. I I
Profile

Assembler
Module oode

</Libraries ~

Features ,..
Suppress warnings ,._
Suppress errors ~

UNIX poe

Errors to file ,...

l isting
v WorK directory " Others ,...

The modifier letters limit the debugging tables generated in response to enabling
the Debug option on the SetUp dia logue box. The letters recognised are

f generate information on functions and top-level variables (outside
functions) on ly

1 generate information only describing each line in the file

v Generate information on ly describing all variables

You can use these letters in any combination.

Debug options is not enabled by default

29

The SetUp menu

30

Profile

This option is not available for the C++ tool.

Enabling this SetU menu option causes the compiler to generate code to count the
number of times each function is executed. This is called profiling

The counts can be printed by call ing _maps tore () to print them to stderr or by
calling_ fmapstore ("filename") to print them to a named file of your choice.
You should do this just before the final statement of your program.

Profiling is not supported by the shared C library. so you must link programs to be
profiled with ANSI Lib. If you wish, you can link with both Stubs and ANSI Lib. in
which case on ly the code for _maps tore () and _fmapstore () will be included
from ANSI Lib; your program will continue to use the shared C library, and will be
much smaller than if linked with ANSI Lib alone.

The printed counts are lists of lineno: count pairs. The lineno value is the
number of a line in your source code. and the count value is the number of times
it was executed. Note that lineno is ambiguous: it may refer to a line in a
#include file. However, this is rare and usually causes no confusion .

Provided you didn't compile your program with the Features option with f as an
argument. blocks of counts will be interspersed with function names. In the simple
cases. the output reduces to a list of line-pairs like

function

lineno: count, where count is the number of times function was executed.

If you use the SetUp menu option Others to add the text -px to the command line.
profiling of basic blocks within functions is performed in addition to profiling the
functions If you do this. the 1 ineno values within each function relate to the start
of each basic block. Sometimes. a statement (such as a for statement) may
generate more than one basic block. so there can be two different counts for the
same line.

Profiled programs run slowly. For example. when compiled with Profile enabled.
Dhrystone 1.1 runs at about 5/8 speed; when compiled -px it runs at only about '3/8

speed.

There is no way. in this release of C. to relate execution counts to the proportion of
time spent in each section of code. Nor is there any tool for annotating a source
listing with profile counts. Future releases of C may address these issues.

Profile is not enabled by default.

... •
CCandC++

Assembler

If this SetUp menu opt ion is enabled, no object code is generated and. naturally,
no attempt is make to link it. If only one assembly listing file is produced, you save
it from a standard save dialogue box. If more than one is produced these are
placed in the subd irectory s of the work directory.

Assembler is not enabled by default.

Module code

This SetUp menu option must be enabled when compiling code for l inking into a
RISC OS relocatable modu le. otherw ise it should not be enabled. When enabled.
code is produced which allows the modu le's static data to be separated from its
code, hence be multiply instantiated.

Module code is not enabled by default

Controlling the linker

Libraries

The Libraries option on the SetUp menu leads to a writable icon in which you
specify a comma-separated list of filenames of libraries to be used in an integral
link step:

~O:O!!M!OIIOU

"""' U'lctlllllll
OtbuC!QP\Ions .-

"""'• Al&lll!liliiH

~•~ ~.nt!t..~»tw~ib¢=~.~~Wtxc~rtt'(l.~: I
r""'-.r• ,.·
~M$,.,YI'ht'IQ¥ ..

~l!m)r$1>"

IJN!Xpcr.
~flO'S IOIIIt

l,allll'l~ I
" W<)>IIoWt<t>t)',.., .

-·~--~-ii!ii-~~~;c;
SIJI,lPi-W:II~S

~WOf'-~ry

"""'

The libraries specified with this option are used instead of the standard one
(AcornC_C++.Libraries.clib.o.Stubs). not in addition to it.

Libraries is not enabled by default.

31

The SetUp menu

1111

--------- •= --··· • ••
wwwa

Using the Features menu option

32

Features

The Features option on the SetUp menu leads to a smal l writable icon in wh ich
you can speci fy add itiona l compiler features with single mod ifier letters

00),)

Command fine ,.
Default path r-
Keep comments
Deline ...
Undetine ,..
Debug options ,..
Profile
Assembler

Module code
,; Libraries

Features

Suppress warnings ,..
Suppress errors r­
UNIX poe
Errors to tile r-
Usting

,; Work directory ,..

Others r-

to' c ..
Command 'ne I"

Default path ,
Define ,.,
Undelioe ,.,
Assembler

Module code
-/'Libraries ,.. Features

Features ,... I
Suppress warnings 1-_ ____. _ _J

..r WOI1< directory ,..
Others

This entry controls a variety of compiler features. including certain checks on your
code more rigorous than usua l. At least one of the following modifier letters must
be entered if Features are enabled

a Check for certa in types of data flow anoma lies. The compiler performs
data flow ana lysis as part of code generation. The checks enabled by this
option can sometimes indicate when an automatic variable has been used
before it has been assigned a value.

c Enable the Limited pee option. This al lows characters after #else and
#endif preprocessor di rectives (treated as comments). and expl icit casts
of integers to funct ion as pointers (forbidden by ANSI) . These features are
often required in order to use pee-style include fi les in ANSI mode.

e Check that external names used within the file are stil l unique when
reduced to six case-insensitive characters. Some linkers only provide six
significant characters in their symbol tables. This ca n ca use problems with
clashes if a system uses two names such as getExprl and getExpr2.
which are only unique in the eighth character. The check can on ly be made

- - CCandC++

------ •••

within one compilation unit (source file) so cannot catch all such
problems Acorn C and C++ allow external names of up to 256 characters,
so this is a portability aid .

f Do not embed function names in the code area. The compi ler does this to
make the output produced by the stack backtrace function (which is the
default signa l handler) and _maps tore () more readable. Removing the
names from the compi ler makes the code slightly sma ller (typically 5%) at
the expense of less meaningful backtraces and _maps tore ()outputs.

h Check that all external objects are declared in some included header fi le.
and that all static objects are used within the compilation unit in which
they are defined. These checks support good modular programming
practices.

i In the listing file (see the Listing option) include the lines from any files
included with directives of the form

#include "file"

j As above. but for files included by l ines of the form:

#include <file>

k Use K&R search rules for nested #include directives (the 'current place·
is defined by the original source file and is not stacked: see the section File
naming and placing conventions on page 15 for details)

m Give a warning for preprocessor symbols that are defined but not used
during the compilation

n Embed function names in the code area (see f feature). This improves the
readability ofthe output produced by the stack backtrace run time support
function and the _maps tore () function (see Profile on page 30).
However. it does increase the size of the code area slightly (around 5%Jin
general it is not useful to specify the f feature with Profile (ie. -p).

p Report on explicit casts of integers into pointers. eg

char *cp = (char *) aninteger;

Implicit casts are reported anyway, unless suppressed by the Suppress
warnings option.

u By default, the source text as ·seen' by the compiler after preprocessing
(expansion) is listed. If th is feature is specified then the unexpanded
source text. as written by the user, is I isted. Consider the line

p = NULL;

By default. this will be listed asp= (0) ; . With the u feature specified. it
wi ll be listed as p=NULL;.

33

The SetUp menu

v Report on all unused declarations. including those from standard headers.

w Allow string literals to be writable. as expected by some UNIX code. by
allocating them in the program's data area rather than the notionally
read-only code area.

When writing high-quality production software. you arc encouraged to use at least
the fah Features options in the later stages of program development (the extra
diagnostics produced can be annoying in the ea rlier stages)

Features is not enabled by default.

Handling warnings and errors

34

Suppress warnings

The Suppress warnings option on the SetUp menu prevents warnings from
appearing.

ror the C++ tool. all warnings are suppressed

For the CC tool. this menu option leads to a writable icon in which you can enter a
set of modifier letters:

cc ~ CH
Command kne ,... Command line ...
Default path ,.. Default path
Keep comments Deline ,..
Deline ,.,. lkloehne ,..
lkldetine ,... Assembler
Debug opbOns ,... Module code
Profde .; l.Jbraries ,..
Assembler Features ,.
Module code

.; Ubraries; Wor\1 d1rectory ,..
Features ,.. Disable ,. I Others ,.
IIQ:IIJM!iii!.:.&~ a{ I
Suppress errors ,..
UNIX pre
Errors to hie ,...

Usting
.; Wor\1 directory ,...

Others ,...

CC and C++ ··-=-·--· ... -....

The modifier letters specify various kinds of warning message to be suppressed by
CC. Usually the compiler is very free with its warnings. as this tends to ind icate
potential portability o r other problems However. too many such messages can be
a nuisance in the early stages of porting a program from o ld-style C. so you can
d isable them.

The modi fier letters for CC are

a Give no Use of = in a condition context wa rni ng. Th is is given
when the compiler encounters statements such as if (a=b) { •••
where it is quite possible that == was intended.

d Give no Deprecated declaration foo() - give ar g types
warning. Use of o ld-style function declarations is deprecated in ANSI C.
and in a future version of the standard this feature may be removed.
However. iL is useful somet imes to suppress this warning when porting o ld
code.

f Give no Inventing "extern int foo()" message. Th is may be
usefu l when compiling o ld-style Cas if it were ANSI C.

n Give no Implicit narrowing cast warn ing. This warning is issued
when the compiler detects an assignment of an expression to an object of
narrower width (eg long to int, float to int). This ca n ca use problems with
loss o f precision for certain values.

p Give no non-ANSI #include < . .• >warning. ANSI require that
#include < ... >should only be used fo r ANSI headers. but it can be
useful to disable this warning when compil ing code wh ich does not
conform to this aspect of t he standard.

v Give no Implicit return in non-void context warning. This is
most often caused by a return from a function wh ich was assumed to
return int (because no other type was speci fied) but is in fact being used
as a void function .

If you enter a space in the writable icon, t hen Select or Return. all warning
messages from CC are sHppressed

35

The SetUp menu

36

Suppress errors

This option is not avai lable for the C++ tool

The Suppress errors option on the SetUp menu leads to a writable icon in which
you can enter a set of modifier letters:

cc ··'f ' {

Command hne ..
Default path ...
Keep comments
Dehne ..
l.kldetine ..
Debug opiJOns ~

Profile
Assembler
Module oode

..; Libraries ..
Features ~

Suppress warnings ,.. Disable '· j

Wi·114¥Uil I I
UNIX pee
Errors to file ..
Llslll'lg

./ Woril directory ,..
<Xhers ,..

These modifier letters can be used to force CC to accept C source which would
normally produce errors. If any of these oplions are needed. it means that the C
source in question does not conform to Lhe ANSI C standard (CC normally
generates precisely the diagnostics required by ANSI).

The modifier letters are:

c Suppresses all implicit cast errors. e.g. 'implicit cast of non-0 int to
pointer'

f Suppresses errors for unclean casts such as short to pointer

i Suppresses syntax checking for #if.

p Suppresses Lhe error which occurs if there are extraneous characters at the
end or a preprocessor line

z Suppresses the error if a zero-length array is used.

CCandC++

UNIX pee

This option is not avai lable for the C++ tool.

Enabling this SetUp menu option switches to compil ing 'portabl e C compiler' C
rather than ANSI C. This is based on the original Kernighan and Ritchie (K&R)
definition of C, and is the dia lect used on UNIX systems such as Acorn's RISC iX
product This option changes the syntax that is acceptable to the compiler. but the
default header and library files are still used. See the section on this option in the
chapter Portability on page 259 for more details.

UNIX pee is not enabled by default.

Errors to file

Th is option is not available for the C++ tool.

Errors to file allows you Lo speci fy a file to which error messages are output for
later inspection :

cc ~

Command line ,....

Default path "'
Keep oomments

Deline "' Undetine
Debug options ...
Profile

Assembler

Module oode

./Libraries I'>

Features I'>

Suppress wamings ~'>

Suppress errors I'>

UNIX pee "' Filename I
'i"·'?Ghl: I'> I I
Listing

.; Work directory ,....

Others ,...

37

The SetUp menu

38

Listings

Listing

This oplion is not ava ilable for the C++ tool.

Enabli ng this SetUp menu option causes a listing fi le to be created. This consists
of lines of source interleaved with error and warning messages. You can get finer
control over the contents of this file using the Features option (see page 321

Listing is not enabled by default

Choosing your work directory

Work directory

The Work directory entry on the SetUp menu leads to a writable icon in which you
specify the work directory:

cc I C++
Command hne ... Command ~ne ...
Default path ,. Default path ...
Keep comments Oef10e ...
Oeftne ,. Ulcleflne ,.
Ulcleftne ,.. Assembler
Debug opbons ,.. Module cocle
Profile -/ Ubrarles
Assembler Features ,..
Module code Suppress warnings Drectory I

..; L1branes ,... 4ftil!fi¥·11M·ii •l J
Features ,... Others ...
Suppress warmngs ,..
S~ress errors ,..
l.JIIIX poe
Enors to file ,...

l.Jstw'lg OirectorV . ~ ' J
.t@f@!i!i ,... "! I

Others ,...

The effect of this option is described in the section File naming and placing conventions
on page 15

The defdult Work directory setting is 1\

CCandC++

Specifying other command line options

Others

The Others option on the SetUp menu leads to a writable icon in which you can
add an arbitrary extra section of text to the command line to be passed to the
relevant underlying program:

'" CC ,, ~ 0++>
Command line II" Command line ~

Default path "" Default path ,.,
Keep comments Define ,.
Define "" Uldefine ,
Undefine ... Assembler
Debug options Module code
Profile ,(Libraries "' Assembler Features ,.,
Module code Suppress warnings

jv Libraries ,.. ..fWot1< directory ,.. ~~ ·· j
Features "" I> I J
Suppress warnings t>
Suppress errors "" UNIX pee
Errors to file ~

Listing
~ Work directory others l

• "" I J

This facility is useful if you wish to use any feature which is not supported by any of
the other entries on the SeLUp dialogue box and menu. This may be because the
feature is used very little. or because it may not be supported in the future.

For a full description of command line options, see Command lines on page 42.

39

Output messages

••• ••• ==· c ······-- . ···------
Output messages

40

The CC and C++ tools output text messages as they proceed. These include
preprocessed source (see Preprocess only), wa rni ng and error messages. By
default any such text is directed into a scrollable output window

<1'· X CC Comal•dl . c
"orcrott Kl~~ u~ nKn ~ vsn ~.ll 1ncorn ~o,.unrs Ltal L" 1 !"corn ~++ unguage ~gstu J. l LRov u U71J

I

This window is read-only; you can scroll up and down to view progress. but you
cannot ed it the text without firs t saving it Clicking Select on the scrollable pa rt of
this window has no effect. to ind icate th is.

The contents o f the window illustrated above are typica l of those you see from a
successfu l compi lation - the t itle l ine of the compiler with version number.
followed by no error messages.

Clicking Adjust on the close icon of the output window switches to the output
summary dialogue box. Th is presents a reminder of the tool ru nning (CC or C++).
the status of the task (Running, Paused. Completed or Aborted). the time when the
task was sta rted and the number of lines o f output that have been generated [ie
those that are d isplayed by the output window):

Unes of output

Abort I Continue I
Lines of output

Abort I Continue

Cl icking Ad just on the close icon of the summary box returns to the output
window.

Both the above output d isplays follow the standard pattern of those of all the
non-interactive Desktop tools. The common featu res o f the non-interactive
Desktop tools are covered in more detail in the chapter General [Patures on page I 0 I
of the accompanying Desktop Tools guide Both tools' output displays and the men us
brought up by cl icking Menu on them offer the standard featu res allowing you to
abort. pause. or continue execution (if the execution hasn't completed); and to
save output text to a fi le, or repeal execution .

CCandC++

Error messages appear in the output viewer. with copies in the editor error browser
when throwback is working. The appendixes C errors and warnings on page 303 and
C++ errors and wamings on page 339 contain more deta ils for interpreting error
messages.

Preprocessed source appearing in the output window is often very large for
compi lation of complex source files. The scrol ling of the output window is useful to
view it. and to investigate it with the full facilities of the source editor. you can save
the output text stra1ght into the editor by dragg1ng the output file icon to the
SrcEdit main icon on the icon bar (providing Wimp$Sc rap is properly set on your
mach1neJ

The icon bar menu

Clicking Menu on either the CC or the C 1 1 icon on the icon bar gives th e following
menu:

C++ .,
lnlo .,. Info ,.
Sa-.e options Sa'o'9 opiiOOS
~lions ,. Opbons r>
Help Help

O-J it 0-Jtt

Save options saves all the tool's current options. including those set both from the
SetUp dialogue box and from the Options ilem on this menu. When you restart the
tool it is initialised with these options rather than the defaults.

The Options item on the main menu allows you to enable Auto run . Auto save or
start the output display as either a text window (default) or summary box When
Auto run is enabled. dragging a source file to the tool's icon starts a compilation
immediately with the current options rather than displaying the SetUp box first
When Auto save is enabled. output obJect files are saved to suitable places
automatically without producing a save dialogue box for you to drag the file from
Both Auto run and Auto save are off by default

For a description of each option in the tool's menu see the chapter General features
on page I 0 I o f the accompanying Desktop Tools user gu ide.

41

Command lines

Command lines

For normal use you do not need to understand the syntax of the underlying CC and
C++ programs· command lines. as they are generated automatically for you from
the SetUp dialogue box and menu settings.

The syntax of the command lines is:

cc «options>' filenames
c++ uoptions" filenames

By default. the C compiler and C++ translator look for source files. and create
object. assembler and listing files. beneath the current work directory.

Many aspects of the programs· operation can be control led via command-line
options. All options are prefixed by i::l minus sign. There are two classes of option
keywords and flags:

• Keywords are recognised in upper case or lower case.

• A flag is a single letter, sometimes followed by an argument. Whenever this is
the case, the C compiler allows white space to be inserted between the flag
letter and the argument. However, this is not always true of other C compilers,
so in the foii·Jwing subsections we on ly list the form that would be acceptable
to a UNIX C compiler Similarly. we on ly use the case of the letter that would
be accepted by a UNIX C compi ler

By using the conventions common to many C compilers, you can bu ild
portable makefiles that you can easily move between different environments.

The options are listed below. Where an option merely gives a page reference to a
desktop equiva lent, you should see that page for full details. Should you need to
use any of the more esoteric options that have no direct desktop equivalent.
remember that you can always add them to the SetUp menu's Others option [see
Specifying olher command line options on page 39)

Where an option is shaded, we recommend that you don't use it with C++ You may
use all options with CC, save for the Translator options on page 45. which are used by
CFront and hence irrelevant to CC

Keyword options

42

Command line option

-help
l pcc

Description

Outputs a summary of the command line options.

Equivalent to UNIX pee in SetUp menu; see
page ;,1.

CCandC++
........... ww ... - ·········-·

Command line option

-fussy o.r -strict

'""via file

... ettors H~e
-littleend or -li

-bigend or -be

-apes «3»qualifiers

/26<(bit»

/32«bit»

/reent"rant»

/nonreent"rant»

/swst«ackcheck''

/noswst«ackcheck»

/fp

/nofp

/fpe2

/fpe3

/fpr«egargs»

/nofpr«egargs»

-depend dependfile

-throwback

-desktop d irectory

Description

ee extra strittabout enforcing conformance iO the
ANSI standard or to pq: ~0nv~n~if)ns(e . g. prohibit
the volatile qualifi~rin -pee mode).
Equivalent to Errors to ftle in SetUp menu; see
page 37,
Readsinextra command line arguments from the
~iyep filename.

Equival!;,n~~S!!f!..i~.?!tUp menu; see page 38 .
Compi le code su itable for a little-end ian ARM.

Compi le code su itable for a big-end ian ARM.

Specify which variant of the ARM Procedure Ca ll
Standard is to be used by the compiler. At least
one qualifier must be present. and there must be
no space between qualifiers. The following
qualiriers are permitted:

26 bit APCS variant.

32 bit APCS variant.

Reentrant APCS variant.

Non reentrant APCS variant.

Software stack checking APCS variant.

No software stack checking APCS variant.

Use a dedicated frame-pointer register.

Do not use a frame-pointer.

Floating point emulator 2 compatibility.

Floating point emulator 3 compatibility.

Floating point arguments passed in floating point
registers.

Floating point arguments are not passed in
floating point registers.

Saves include file dependency lists. which are
suitable for use with 'make' utilities.

Equivalent to Throwback option icon in SetUp
dialogue box; see page 24.

Equiva lent to Work directory in SetUp menu: see
page 38.

43

Command lines .. --~================~~-~~£~~••n4QA~_. aa ..

44

Command line option

-C++

Preprocessor options

Command line option

-!directory

-jdirectories

-E

-C

-M

Description

Assume C++ code is being processed. This option
is on ly used by the C++ program, when invoking
the compiler to pre-process C++ source before
translation , and when compiling the generated C.

When preprocessing under the-E opt ion.
comment handling is changed to correctly dea l
with C++'s ·;;· comments (which are terminated
by the end of the source line), and #pragma l ines
are passed through to the preprocessor output.

During the C compilation stage, use of this flag
disables certain warnings (most notably ·no
side-effect in void context'. and messages about
unused variables). otherwise produced by some
rather odd code constructs in the generated C. It
also arranges that in any warning or error reports.
the original (type-qualified) C++ source names
are printed rather than the modified names
CFront generates in order to implement
overload ing.

Description

Equiva lent to Include option icon in SetUp
dialogue box; see page 23.

Equivalent to Default path in SetUp menu; see
page 26.

Equivalent to Preprocess only option icon in
SetUp d ialogue box ; see page 24.

Equiva lent to Keep comments in SetUp menu;
see page 27.

If this flag is specified, on ly the preprocessor
phase of the compiler is executed (as with cc -E)
bul the on ly output produced is a l ist. on the
standard outpu t stream, of rnakefile dependency
lines suitable for use by a make util ity. Th is can be
redirected to a file using standard UNIX/MS-DOS
notation. For example:

cc -M xxx.c >> Makefile.

Command line option

-Dsymbol <<=value>>

-usymbol

Translator options

CC and C++

Description

Equivalent to Define in SetUp menu; see page 27.

Equivalent to Undefine in SetUp menu: see
page 28.

These options affect the operation of CFront.

Command line option

+v

+w

+p

+g

-F

Code generation options

Description

Print commands as CFront executes them

Equivalent to Suppress warnings in C++'s SetUp
menu; see page 34. (Suppress warnings also
uses CC's -W option l

Pedantic- compile strict C++

Equivalent to Debug option icon in C++'s SetUp
d ialogue box: see page 24. (Debug also uses CC's
-g option.)

Send CFront output to stdout; do not compile it

If you are using C++, we recommend you only use the fol lowing from the code
generation options below: -o. -g, -s and -zM.

Command line option

-o file

- g«options»

Description

The argument to the -o flag gives the name of the
file which will ho ld the fina l output of the
compi lation step. In conjunction with -c, it gives
the name of the object file; in con junction with -5.
it gives the name of the assembly language fi le.
Otherwise. it names the final output of the link
step.

Equiva lent to Debug option icon in SetUp
dia logue box and Debug options in SetUp menu:
see pages 24 and 29.

-p11 options>> Equivalent to Profile in SetUp menu: see page 30 Ol!llliY- _,..._....,_~ ____ .._.,.._ __ __ -

- s Equ ivalent to Assembler in SetUp menu: see
page 31.

-zM Equivalent to Module code in SetUp menu; see
page 31.

45

Command lines

46

Linker options

Command line option

-c

-llibraries

Description

Equivalent to Compile only option icon in SetUp
dialogue box: see page 23.

Equ ivalent to Libraries in SetUp menu: see
page 31.

Warning and error message options

If you are using C++. we recommend you only use the following from the warning
and error message options below: -W.

Command line option

-Woptions

Description

Equivalent to Suppress warnings in SetUp menu;
see page 34 .

... t ~ op ... t ... ? · o n ... s_ _____ !~~~:n3~~o-S_•_P_Pret!IS __ e_rro_ rs_ •n < Se_t_u_p_m_e_n_u_:~-

Additional feature options

If you are using C++. we recommend you only use the following from the
additional feature options below -zr and -f.

Command line option Description

zpAlphaNum 't l$ qg ~n t)e use&' to emulate #pragma
directives. The letter and digit . .whkh follow it are
the same characters that. would follow the·~· of a
~ragma dire<;tiVe. See#pragma directives on
pageJ.&(> lor det~jl~.

~--------------------~~~--zrnumber This flag allows the size of (most) LDMs and (alii

-ffeatures

STMs to be controlled between the I imits of 3 and
16 registers transferred. This can be used to help
contro l interrupt latency where this is crit ical.

Equiva lent to Features in SetUp menu; see
page 32.

CCandC++

Worked examples

CHello

Several examples of C and C++ programs on the discs of Acorn C/C++ are worked
through in this guide and in the Desktop Tools guide A collection of examples are
listed here illustrating various points and styles of working.

The following example programs are in the directory AcornC_C++. Examples.
each in a subd irectory with the name of the example For each program. we give a
'recipe' for how to compile, link and run the program. Filenames arc given relative
to the subd irectory containing each example unless otherwise stated. It is
assumed that you have read the preceding parts of this chapter For more details of
the too l Make, see the chapter Maf~e on page 57 of the accompanying Desktop Tools
user guide When you enter any command lines given below. you must first ensure
that the currently-selected directory is the subd irectory containing the example
being tried .

There are some further less trivial examples that we omit here. These show you
how to implement more esoteric features. mainly involving interworking C and/or
C++ with assembler They are described elsewhere in the Acorn CIC++ manual set.
together with necessary supporting technical information .

Purpose:

Source

Compile using:

Run by:

Clean up by:

The standard most trivial C program. Try it as an exercise.

c.HelloW

default CC SetUp options

double clicking on HelloW

deleting Hell ow and o. Hellow

C++Hello

Purpose

Source:

Compi le using

Run by:

Clean up by:

The standard most trivial C++ program. Try it as an exercise.

c++.HelloW

default C++ SetUp options

double clicking on HelloW

deleting Hell ow and o. Hellow

47

Worked examples

48

Sieve

Purpose:

Source:

Compi le using

Run by:

Clean up by:

Dhrystone 2.1

Purpose:

Sources

Makefile

Build by

Run by:

Rebuild by

Clean up by:

CModule

Purpose:

The Sieve of Eratosthenes is often presented as a standard
benchmark, though it is not very meaningful in this context.

c.Sieve

defau lt CC SetUp options

double clicking on Sieve

deleting Sieve and o. Sieve

Dhrystone 2.1 is the standard integer benchmark. Its results
require careful interpretation (it often overstates the real
performance of machines) . Try as a first exercise in using the
Make utility (!Make).

h .dhry
c .dhry_l
c . dhry_2

Makefile

double clicking on Makefile. with default Make options

double clicking on Dhrystone

Reply with any number in the range 20000 to 250000 to the
prompt for number of iterations. Try a big number such as
200000 and time the execution with a stopwatch or sweep
second hand to confirm the cla imed performance Note how
performance depends on screen mode.

double clicking on Make file again (try altering some of the
options in Makefile with Make between rebuilds: eg
compile in UNIX pee mode or link with ANSILib instead of
Stubs).

deleling Dhrystone, o.dhry_ l and o.dhry2 .

To illustrate how to implement a module inC You can also
use it as another exercise in using Make. For more details on
constructing reloca table modules inC see the chapter How to
write relocatable modules inC on page 279.

CCandC++

Sources: c. CModule CModuleHdr

Build using CC o f c. CModule with opt ions Compile only and Module
code enabled. saving output object fi le as o. CModule .
CMHG of cmhg. CModuleHdr to o. CModuleHdr. Link of
o.CModule, o.CModuleHdr and

o r by:

Run from:

Test from:

Clean up by:

AcornC C++. Libraries. CLib. o. Stubs with Module
enabled to the output file CModule .

double cl icki ng on Make file . wit h defau lt Make options

the command line using CModule

the command l ine using:

help tm1
help tm2
tm1 hello
tm2 1 2 3 4 5
tm1 1 2 3
tm2 hello

(try other combinations too)

*BASIC
> SYS &88000 : REM should give an error
> SYS &88001 : REM should give dividebyOerror
> SYS &88002 : REM no error, just a message
> SYS &88003 : REM no error. just a message
> SYS &88004 : REM same as &88000 .. .

(now repeat some o f these after issu ing some inva lid
*commands. 1

> *foo
> SYS &88002

etc.

>QUIT

from the command line typing: RMKill TestCModule
deleting CModule. o. CModule and o. CModuleHdr or
runn ing Make on Makefile with target clean selected.

49

Worked examples
Desktop application examples

50

The desktop applications I Hyper, !MinApp and !TBoxCalc and the various versions
of SaveAs are all too complex to be described here in great detail.

They are best built by double clicking on their Makefiles. They can be run by double
clicking on their appl ication icons.

wt

3
················-·····

CMHG ~c , .. ; .£4Www•••• • e • ww•ww:••••¥aw•••w•••a

CMHG (the C Module Header Genrralor) is a desktop tool which provides an easy
interface to the CMHG program that Acorn C/C++ installs in you r computer's

library. The CMHG tool constructs command lines and passes them to the CMHG
program. By using CMHG you can write a RISC OS relocatable module entirely inC
without having to use ARM assembly language.

Every relocatable modu le has at its sta rt [ie the part that loads into memory at its
lowest address) a header table pointing to various items of data and program.
Most o f the items pointed to are optional. the pointers being zero if not needed.
When writing a relocatable module in assembly language you lay this table out
yourself. but when writing inC, you use CMHG to generate this for you. In add ition
to generating a module header, CMHG also inserts sma ll standard routines to. for
example, ini t ialise the C language l ibrary support and make service ca ll handl ing
efficient.

To construct a relocatable modu le you write a number of routines in C with
standard prototypes. some of these routines to be ca lled with the processor in
supervisor (SVC) mode. These are accompanied by a text description file written in
a special syntax which CMHG understands. For details of this language and the
speci fications of the C routines. see the chapter How t.o writ.e re/ocatab/e modules inC on
page 279. For more deta ils of relocatable modu le headers. see the chapter entitled
Modules in the RISC 05 3 Programmer's Refaence Manual. For some hints about
memory usage from relocatable modu le code. see the RISC OS 3 Programmer's
Reference Manual.

The rest of this chapter explains the (simple) contro ls o f the CMHG tool. CMHG is
one of the non-interactive desktop tools, its desktop user interface being provided
by the FrontEnd module. It shares many common features with the other
non-interactive tools. These common features are described in the chapter General
features on page I 0 I o f the accompanying Desktop Tools guide.

A note about Make

The Make tool (see the chapter Make on page 57 of the Desktop Tools guide) can also
construct command l ines for the underlying CMHG program. You' ll find it a better
tool for managing large projects However. much of what is in this chapter is
relevant. since Make sets options for the CMHG program with the CMHG tool's
user interface.

51

Starting CMHG

Starting CMHG

52

To start the CMHG tool. first open the AcornC_C++ . Tools directory drsplay.
then double click on ICMHG. Its icon appears on the icon bar

P!:lc
CMHG

Clicking Select on this icon. or dragging a CMHG description file from a directory
display to this icon. brings up the SetUp dialogue box. from which you control the
running of CMHG

l~t~ CMHG

S~r~~~--~~~~--~====~1
cancel J 11 Run jj

CMIIG has hardly any options for its use. so its interface is simpler than most of
the other Acorn C/C++ tools.

The Source writable icon is for the name of the description file to be processed. If
you drsplayed the SetUp dialogue box by clicking on the CMHG icon bar icon, you
will want to fill this in by dragging a CMHG description file from a directory display
to this icon before running CMHG

Clicking Menu on the SetUp dialogue box brings up the CMHC SetUp menu, which
owmg to the simplicity of CMHG only has a single Command line item

You can get CMHG to generate a header file from the description file. which
contains #defines of constants for the commands declared in the description
file. To do so. you need to append the name of the header file to the text in the
Command line writable icon:

lr.xe9c4 7d02 SCSI::MHardy $.Tmp.CMHGDeiHc.trll

Run

CMHG

The icon bar menu

Clickmg Menu on the CMHG application icon on the icon bar gives access to the
following options

For a description of each option in the application menu $ee the chapter General
features on page I 0 I of the accompanying Desktop Tools guide.

Example output
The following is an example CMHG description file. similar to that used within
Acorn to construct the FrontEnd module, which is itself a relocatable module
written inC:

; Purpose: module header for the generalised front end module ;

module-is-runnable: ; module start code

initialisation-code: FrontEnd_init

service-call-handler : FrontEnd services Oxll service-memory

title-string : FrontEnd

help-string : FrontEnd 1 . 00

command-keyword-table : FrontEnd commands
FrontEnd_Start(min-args: 4, max-args: 5,

help-text: "Help text\n"),
FrontEnd_Setup(min-args: B, max-args: 8,

help-text: "Help text\n")

swi-chunk-base-number: Ox081400

53

Command line interface

Running CMHG displays any error messages in the standard text output window
for non-interactive tools. If all goes well. as it should do if you try CMHG with the
above description file. this window is empty

The output file produced is an object file. You l ink this with the object files
compiled from your C code to produce your relocatable module.

Command line interface

54

For normal use you do not need to understand the syntax of the underlying CMHG
program's command line. as it is generated automatically for you from the SetUp
dialogue box and menu settings.

The syntdx of the CMHG command line is:

cmhg descfile 110bj file ttdefsfile ,,,

descfile

obj file

defs-file

Filename of the CMHG description file

Filename of the output object file to link wtth your objects to form
a relocatable module.

Filename of the output definitions header file. giving constants
for the commands in the description rile.

4 ToANSI ~ c
~· .

T oANSI is a desktop tool which provides an easy interface to the ToANSI
program that Acorn CIC++ installs in your computer's library The ToANSI tool

constructs command lines and passes them to the ToANSI program ToANSI helps
convert program source written in the PCC style of C to program source in the ANSI
style of C. PCC is the UNIX Portable C Compiler. and closely follows K&R C. as
defined by B Kernighan and D Ritchie in their book Tfle C Programming Lat1guage.

ToANSI enables you to write (with care) programs that can be automatica lly
converted between the PCC and ANSI d ialects of C. hence assisting you in
constructing easi ly portable programs. The associated tool ToPCC makes
approximately the reverse translations to ToANSI. For more details of portability
issues. see the chapter Portability on page 259. The changes that ToANSI makes to C
source are listed in the section ToANSI C translation below

ToANSI1s one of the non-interactive desktop tools. its desktop uc;er interface being
provided by the FrontEnd module It shares many common features with the other
non interactive tools These common features are described in the chapter General
features on page 101 of the accompanying Desktop Tools guide

55

ToANSI C translation

ToANSI C translation

56

ToANSI makes the following transformations to C source code or header text

• Function declarations with embedded comments are rewritten without the
comment tokens. This reverses the action of ToPCC with regard to function
declarations. rewriting

type foo(/* args */);

as

type foo(args) ;

This transformation is one which requires care 1n the usc of ToANSI. as it can
result in invalid C being uncommented

• Function definitions of the form

type foo(al, a2)
type al ;
type a2;
{ ... }
are rewritten as

type foo(type al, type a2)

• Ava alist in the function definition is translated to

• type foo() is rewritten as type foo(void)

• VoidStar (what ToPCC replaces void * with)ls left untouched. as if it is
correctly typedef d to something su1table. thereafter its use is correct in
both PCC and ANSI C

• ToPCC rewrites unsigned and unsigned long constants using the
typecasts (unsigned) and (unsigned long) ToANSI does not reverse
this change. as this is not required for correct ANSI C

Note that ToANSI performs only simple textual translations and is not able to
reliably diagnose C syntax errors. which may produce surprising results. so it is
best to use ToANSI on ly on code you already know compiles

ToANSI

A note about Make

Since porting programs is usually a one-off process involving some
experimentation only direct use of ToANSI makes sense You cannot use ToANSI
from Make

Starting ToANSI
To start the ToANSI tool. first open the Acornc C++ . Tools directory display.
then double click on 'ToANSL Its icon appears on the icon bar

c
lt

ToANSI

Clicking Select on this icon . or dragging a source file from a directory display to
this icon, brings up the SetUp dialogue box. from which you control the ru nning of
ToANSI:

ToANSI

R~ [I
'--------'------:-;=====i

Cancel I I Run I

ToANSI has hardly any options for its use. so its interface is srmplcr than most of
the other Acorn C/C++ tools.

The File writable icon is for the name of the description file to be processed If you
displayed the SetUp dialogue box by clicking on the ToANSI icon bar icon. you will
want to fill this in by dragging a source file from a directory display to this icon
before running ToANSI.

Cl icking Menu on the SetUp dialogue box brings up the ToANSI SetUp menu.
which owing to the simplicity ofToANSI only has a single Command line i tem

TOANSI l
Command ~n& ,..

57

The icon bar menu

The icon bar menu

Clicking Menu on the ToANSI application icon on the icon bar gives access to the
following opt1ons

Info

Save ophOOs
OphOOs ,...
Help

Ouit

For a description of each option in the application menu see the chapter Cenrral
features on page I 0 I of the accompanying Desf~top Tools guide.

Example output

58

Running ToANSI displays any error messages in the standard text output window
for non-interactive tools. If all goes well this window i<; empty

As an example of using the tool ToANSI, open an empty SrcEdit text window and
type the following example C source lines in it

int foo(a, b)
float a;
double b;
{}

Check that your Wimp$ Scrap environment variable is set to a sensible file name.
then save your new text file straight onto the ToANSI icon bar icon. Run ToANSI,
then save the output text file straight onto the SrcEdit icon bar icon. The translated
file looks like

int foo(float a, double b)
{}

ToANSI

Command line interface

For normal use you do not need to understand the syntax of the underlying ToANSI
program's command line. as it is generated automatiCally for you from the SetUp
dialogue box and menu sett ings.

The syntax of the ToANSI command l ine is

toanSi (C 0ptiOn511 cdnfile «OUtfile 1111

options

i nfile

out file

Options: the -d option describes ToANSI. and the -help option
gives the command l ine syntax and options

Fi lename of the input C source or header text file wh ich defau lts
to stdin.

Filename of the output C source or header text fil e, which defaults
to stdout.

59

wwwwwwwwwewwwww··-----------

60

5 ToPCC
UllllllillltiUIUI11311l1111t'!lf1ll• lllilllt "' •V• 10 lllt ** llli'lt "'" llll_•_:llli~"'l!l:.1iUIIII''It 'llll'i ll I ''"'"""

T oPCC is a desktop too l which provides an easy interface to the ToPCC program
that Acorn C/C++ insta lls in your computer's library. The ToPCC tool constructs

command lines and passes them to the ToPCC program. ToPCC helps convert
program source written in the ANSI style of C to program source in the PCC style of
C. PCC is the UN IX Portable C Compiler. and closely follows K&R C, as defined by B
Kernighan and D Ritchie in their book The C Programming Language.

ToPCC enables you to write (with care) programs that can be automatica lly
converted between the ANSI and PCC dia lects of C, hence assisting you in
constructing easi ly portable programs. The associated tool ToANSI makes
approximately the reverse translations to ToPCC. For more details of portability
issues. see the chapter Portabilit.y on page 259. The changes that ToPCC makes to C
source are l isted in the section ToPCC C translation below.

ToPCC is one of the non-interactive DDE tools. its desktop user interface being
provided by the FrontEnd module. It shares many common features with the other
non-interactive tools. These common features are described in the chapter General
features on page I 0 I of the accompanying Desktop Tools guide.

61

ToPCC C translation

ToPCC C translation

62

ToPCC makes the following t ransformations to C source code or header text:

• I unction declarations of the form

type foo(args);

are rewntten as

type foo(/* args */);

Any comment tokens/* or* I in args are removed .

• Function definitions of the form

type foo(type al, type a2) { •• . }

are rewritten as

type foo(al, a2)
type al;
type a2;

• A •• • in the function definition is interpreted as int
va alist . Full translation of variadic functions is not
performed.

• type foo(void)

IS rewritten as

type foo()

• Type void * is converted to VoidStar which can be typedef'd to
somethmg suitable (eg char *)

• Unsigned and unsigned long constants are rewritten using the typecasts
(unsigned) and (unsigned long)

For example. 300ul becomes (unsigned long)300L

Note that ToPCC performs only simple textual translations and is not able to
reliably d iagnose C syntax errors. which may produce su rprising resu lts. so it is
best to use ToPCC only on code you already know compi les.

A note about Make

Since porting programs is usually Clone-off process invo lving some
experimentation, on ly direct use ofToPCC makes sense. You ca nnot use ToPCC
from Make.

Starting ToPCC

ToPCC

To start the ToPCC tool. first open the AcornC C++. Too l s directory display,
then double click on !ToPCC. Its icon appears on the 1con bar

c
ToPCC

Clicking Select on this icon. or dragging a source fi le from a d irectory display to
this 1con. brings up the SetUp dialogue box. from which you control the running of
ToPC'C

lful <l ToPCC

File I I
~----------~--------~

cancel J D un j
-

ToPCC has hardly any options for its usc, so its interface is simpit' r than most of
the other Acorn C/C++ tools.

The File writable icon is for the name o f the description fi le to be processed If you
displayed the SetUp dialogue box by cl icki ng on the ToPCC icon bar icon. you wil l
want to fill this in by dragging a source file from a directory d1splay to this icon
before running ToPCC.

Clicking Menu on the SetUp dialogue box brings up the ToPCC SetUp menu

ToPCC
Command lme r­
OptlOfls r-

Command line shows you the command line that wil l be passed to the underlying
ToPCC program; you can then alter it if necessary

63

The icon bar menu -------------lt'J!f:'---····· ··-- ...
Options leads to a writable field in which you can specify one or more single letter
options:

ToPCC
Command line ,.. OIXions, .1
II • • b. I I

These opt ions are:

c Don't remove the keyword const

e Don't remove #error .. . directives

1 Don't remove #line . .. directives

p Don't remove #pragma ... directives

s Don't remove keyword signed

t Don't remove the second argument to va_start()

v Don't remove the keyword volatile

The icon bar menu

64

Clicking Menu on the ToPCC application icon on the icon bar gives access to the
following options

TQPCC •
Info "'
Save opt1011s
Options ,..

Help

Quit

For a description of each option in the appl ication menu see the chapter General
featLrres on page I 0 I of the accompanying Desklop Tools guide.

Example output

ToPCC

Running ToPCC displays any error messages in the standard text output window
for non-interactive tools. If all goes well this window is empty

Iff K.J:, r ' ~· ToPCC (Comcletlfld) t ~ · i

As an example of using the tool ToPCC, open an empty SrcEdit text window and
type the following example C source line in il:

int foo(float a);

Check that your Wimp$ Scrap environment variable is set to a sensible file name,
then save your new text file straight onto the ToPCC icon bar icon Run ToPCC, then
save the output text file straight onto the SrcEdit icon bar icon The translated file
looks like

int foo(/* float a*/);

65

Command line interface

Command line interface

66

for normal use you do not need to understand the syntax of the ToPCC command
line. as it is generated automatically for you from the SetUp dialogue box setting
before 1t 1s used.

The syntax of the ToPCC command line is

tOpCC <<OptiOnS» rrinfile «OUt file>~ II

options

infile

out file

A minus· - · followed by one or more letters controll ing individual
features of the conversion. sec page 64 Ac, well as the options
listed there. the -d option describe'> ToPCC. nnd the -help
option gives the command line syntax and opti ons

Fi lename of the input C source or header text fi le. wh ich defaults
to stdin.

Filename of the ou tput C source or header text fi I e. which defau lts
to stdout.

-·------------------------·········---- ------------------

Part 2 - C language issues

67

68

6 C implementation details

T his chapter is split into parts. each of which details certain aspects of Acorn C's
Implementation of the ANSI C standard

• The first part- Implementation details on page 70 -give~ details of those aspects
oft he compi ler which the ANSI standard identifies as
implementation-defined, and some other points o f interest to programmers
They are grouped by subject; the section Implementation limits on page 76 lists
the points required to be documented as set out in appendix A 6 of the
str~ndard .

• The second part- Standard implementation definiliatl on page 77- discusses
r~spects of the compi ler which are not defined by the J\NSI standard. but are
implementation-defined and must be documented.

Appendix A.6 of the standard X3 159-1989 collects together information about
portability issues; section A6.3 lists those points which are implementation
defined. and directs that each implementation shall document its behaviour in
each of the areas listed. This part corresponds to appendix A 6 3 answering
the points listed in the appendix. under the same headings and in the same
order

• The thi rd part- btra features on page 86- describes some machine-specific
features of the Acorn C compiler #pragma directives. and special declaration
keywords lor functions and variables

69

Implementation details

Implementation details

Identifiers

Data elements

70

Identifiers can be of any length. They are truncated by the compiler to 256
characters, all of which are significant (the standard requires a minimum of 31 1

The source character set expected by the compiler is 7 bit ASCII except that within
comments . ~tring litera ls, and character constants. the full ISO 88'59-1 8 bit
chcmJCter ~c t is recognised. At run time, the C library processcc; the full ISO 8859-1
8 bit character set. except that the default loca le is the C loca le (see the ~ection
Standard imp/C'menlation definilion on page 77). The ctype funct;ons therefore all
return 0 when applied to codes in the range 160-255. By ca lling
setlocale(LC_CTYPE , "IS08859-l") you ca n ca use the ctype functions
such as isupper() and islower() Lo behave as expected over the full8 bit
LAtin alphabet. rather than just over the 7 bit ASCII subset

Upper and lower case characters are distinct in all ident:ficrs both internal and
externa l

In -pee and -fc modes an identifier may also contain a dollar character

The sizes of data elements are as follows.

Type
char
short
int
long
float
double
long double
all pointers

Siz.e in bits
8
16

32
32
32
64
64
32

(subject Lo future change)

Integers arc represented in two·s complement form .

Data items of type char are unsigned by default. though they may be exp licitly
declared as signed char or unsigned char. {In -pee mode there is no
signed keyword, so chars are signed by default and may be declared unsigned if
requ1red l Single-character constants are thus always pos1Live

Floating point quantities are stored in the II:.EI:.. format In double and long double
quantities. the word containing the sign the exponent and the most significant
part of the mantissc. is stored at the lower machine address

C implementation details

Limits: limits .b and float.b

The standard defines two header files. limits . hand float. h . wh1ch contain
constant declarations describing the ranges of values wh1ch can be represented by
the arithmetic types The standard also defines minimum values for many of these
constants

The following table sets out the values in these two headers on the ARM. and a
brief description of their significance See the standard for a full definition of their
meanings

Number of bits in sma llest object that is not a bit field (ie d byte)

CIIAR BIT 8

tvl ilx imum number of bytes in a multi byte character, for any supported loca le:

tv\ 13. LEN MAX I

Numeric ranges of integer types :

The midd le column gives the numerical value of each range's endpoint. while the
right hand column gives the bit patterns (in hexadecimal) that wou ld be
interpreted as this value in C. When entering constants you must be careful about
the size and signed-ness of the quantity. Furthermore. constants are mterpreted
differently in decimal and hexadecimal/octa l See the ANSI standard or any of the
recommended textbooks on the C programming language for more details

Range End-point Hex representation

CHAR MAX 255 Oxff
CHAR MIN 0 OxOO

SCHAR MAX 127 Ox7f
SCHAR MIN - 128 Ox80

UCHAR MAX 255 Oxff

SHRT MAX 32767 Ox7fff
SHRT MIN -'~ 2768 Ox8000

USHRT MAX 65535 Oxffff

INT MAX 2147483647 Ox7fffffff
INT MIN -2 147483648 Ox80000000

UINT MAX 4294967295 Oxfllffllf

LONG MAX 2147483647 Ox7fffffff
LONG MIN -2147483648 Ox80000000

ULONG MAX 4294967295 Oxffffffff

71

Data elements

72

Characteristics of floating point:

FLT RADIX

FLT ROUNDS

2

The base (radix) of the ARM floating point number representation is 2. and floating
point addition rounds to nearest.

Ranges of floating types

FLT MAX

FLT MIN

DBL MAX

DBL MIN

LDBL MAX

LDBL MIN

3.4028234 7e+ 38F

1.17549435e-38F

I. 7976931348623 1571 e+308

2.22507385850720 138e-308

I .7976931348623 1571 c t 308

2.22507385850720 138e-308

l~a nges of base two exponent s

FLT MAX EXP 128

FLT MIN EXP (-125)

DBL MAX EXP 1024

DBL MIN EXP (-1021)

LDBL MAX EXP 1024

LDBL MIN EXP (-10211

Ranges of base ten exponents

FLT MAX 10 EXP 38

FLT MIN 10 EXP (-37)

DBL MAX 10 EXP 308

DBL MIN 10 EX (-307)

LDBL MAX 10 EXP 308
- - -

LDBL MIN 10 EXP - - (-307)

Decimal digits o f precision:

FLT DIG

DBL DIG

LDBL DIG

6
15

) 5

C implementation details

Digits (base two) in mantissa

FLT_ MANT_ DIG 24

DBL MANT DIG 53

LDBL_MANT_DIG 53

Smallest positive values such that (I 0 + x! = 1.0)

FLT EPSILON

DBL EPSILON

LDBL EPSILON

Structured data types

I. 19209290e-7F

2.2204460492503131 e-16

2.220446049250313 1 e- 16L

The standard leaves details of the layout of Lhe components of structured data
types to each implementation The fo ll owing points apply l o the /\corn C compiler:

• Structures are aligned on word boundaries.

• Structures are arranged with the first-named component at the lowest address.

• 1\ component with a char type is packed into the next avai lable byte

• A component with a short type is aligned to the next even-addressed byte.

• All other arithmetic type components are word-aligned. as are pointers and
i nts containing bitfields.

• The only valid type for bitfields are (stgnedl int and unsigned int (In
-pee mode. char. unsigned char. short. unsigned short . long and
unsigned long are also accepted I

• A bttfield of type int is treated as unstgned by default (stgned by default in
-pee mode)

• 1\ bitfield must be wholly contained within the 32 btts of an int

• Bitfields are allocated within words so that the first field specified occupies the
lowest addressed bits of the word. (When configured little-endiaM, lowest
addressed means least significant; when configured big-endian. lowest
addressed means most significant.

73

Pointers

-::===============:::lll~!lllf:;lla;;~---·&MJIIL&:¥> If •• *"'***

Pointers

The following remarks apply to pointer types:

• Adjacent bytes have addresses which differ by one.

• The macro NULL expands to the value 0.

• Casting between integers and pointers results in no change of representation

• The compi ler warns of casts between pointers to functions and pointers to
data (but not in -pee mode)

Pointer subtraction

When two pointers are subtracted. the difference is obtained as if by the
expression:

((int)a- (int)b) I (int)sizeof(type pointed to)

If the pointers point to objects whose size is no greater than four bytes, word
alignment of data ensures that the division will be exact in all cases . For longer
types. such as doubles and structures. the division may not be exact unless both
pointers are to elements of the same array. Moreover the quotient may be rounded
up or down at different times. leading to potential inconsistencies.

Arithmetic operations

74

The compiler performs all of the ·usual arithmetic conversions' set out in the
standard.

The following points apply to operations on the integral types:

• All signed integer arithmetic uses a two's complement representation.

• Bitwise operations on signed integral types follow the rules which arise
naturally from two's complement representation

• Right shifts on signed quantities are arithmetic.

• Any quantity which specifies the amount of a shift is treated as an unsigned
8 bit value.

• Any value to be shifted is treated as a 32 bit value.

• Left shifts of more than 31 give a result of zero.

• Right shifts of more than 31 give a result of zero from a shift of an unsigned or
positive signed value; they yield -I from a shift of a negative signed value.

• The remainder on integer division has the same sign as the divisor.

C implementation details

• If a value of integral type is truncated to a shorter signed integral type. the
result is obtained by masking the original value to the length of the
destination. and then sign extending.

• Conversions between integral types never causes an exception to be raised

• Integer overnow does not cause an exception to be raised

• Integer division by zero causes an exception to be raised

The following points apply to operations on floating types

• When a double or long double is converted to a float. round1ng is to the
nearest representable value.

• Conversions from floating to integral types cause exceptions to be raised on ly
if the va lue cannot be represented in a long int (or unsigned long int
in the case o f conversion to an unsigned int}

• Floating point underflow is not detected; any operation which underflows
returns zero.

• Floating point overflow ca uses an exception to be raised

• Floaring point divide by zero causes an exception to be raised

Expression evaluation
The compiler performs the 'usual arithmetic conversions· (promotions) set out in
the standard before evaluating any expression

• The compiler may re-order expressions involving only associative and
commutative operators of equal precedence. even in the presence of
parentheses (e g a+ (b - c) may be evaluated as (a + bl - c)

• Between sequence points. the compiler may eva luate expressions in any order.
regardless of parentheses. Thus the side effects of expressions between
sequence points may occur in any order.

• Similarly, the compiler may eva luate function nrguments in Jny order.

• Any deta il of order of evaluation not prescribed by the slnndard may vary
between releases of the Acorn C compiler.

75

Implementation limits

Implementation limits

76

The standard sets out certain minimum translation limits which a conforming
compiler must cope with: you should be aware of these if you are porting
applications to other compilers. A summary is given here. The 'mem' limit
indicates that no l imit is imposed other than that of avai lable memory.

Description Requirement Acorn C

Nesting levels of compound statements and 15 mem
iteration/selection control structures

Nesting levels of conditional compilation 8 mem

Declarators modifying a basic type 31 mem

Expressions nested by parentheses 32 mem

Sign ificant characters

in internal identifiers and macro names 31 256
in external identifiers 6 256

Externa l identifiers in one source file 511 mem

Identifiers with block scope in one block 127 mem

Macro identifiers in one source file 1024 mem

Parameters in one function defin ition/ca ll 31 mem

Parameters in one macro definition/invocation 31 mem

Characters in one logical source line 509 no limit

Characters in a string literal 509 mem

Bytes in a single object 32767 mem

Nesting levels for #included files 8 mem

Case labels in a switch statement 257 mem

Members in a single struct or union, 127 mem
enumeration constants in a single enum

Nesting of struct/union in a single declaration 15 mem

C implementation details

Standard implementation definition

Translation (A.6.3.1)

D1agnostic messages produced by the compiler are of the form

"source-file" , line#: severity: explanation

where severity is one of

• wamif1g. not a diagnostic in the ;\NSI sense. but an attempt by the compiler to
be helpful to you.

• error a violation of the ANSI specification from which the compi ler was able to
recover by guessing your intentions.

• serious error: a vio lation of the ANSI specification from which no recovery was
possible because the compiler could not rel iably guess what you intended

• {alai (for example. 'not enough memory'): not rea lly d diagnostic, but an
indication that the compi ler's limits have been exceeded or that the compiler
has detected a fault in itself.

Environment (A.6.3.2)
The mapping of a command line from the ARM-based environment into arguments
to main () is implementation-specific The shared C library supports the
following

• The arguments given to main () are the words of the command lnw (not
including 1/0 redirections. covered below). delimited by white space. except
where the white space is contained in double quotes A white space character
is any character of which is space is true (Note that the I~ISC OS Command
Line Interpreter filters out some of these) .

A double quote or backslash character(\) inside double quotes must be
preceded by a backslash character. An 110 red irection wi l l not be recognised
inside double quotes.

The shared C l ibrary supports a pair of interactive devices. both cal led : tt. that
hand le the keyboard and the VDU screen

• No buffering is done on any stream connected to : tt unless 1/0 redirection
has taken place If 1/0 redirection other than to : tt has taken place. full file
buffering is used except where both stdout and stderr have been
redirected to the same file. in which case line buffering is used

77

Identifiers {A.6.3.3)

- -.- -~-e::t•R•.-.•IIl•llllllii•Di•l!liii--DI•IIl•lllllllllll-l'l-IIIIIISIIII:!•-•~;;SPII:illlllll.._lllllllll lllllllllllllllllllllllllllllllllllilioldf 11111111111<11111111MI lllllllllllllllllllllllllll'J811llllllllllilll•lli:IIIIIOIIII:lll•::liiMeilillllWIIICIIW~WIJIMIIQ*IIIIlllll*311*ri&Dll

Using the shared C library. the standard input. output and error streams, stdin,
stdout. and stderr can be redirected at runtime in the ways shown below. For
example. ifrnyeopy is a compiled and linked program which simply copies the
standard inpu t to the standard ouLpuL. Lhe following line:

*rnyeopy < infile > outfile 2> errfile

runs the program. redirecting stdin to the file infile. stdout to the fi le
outfile and stderr to the file errfile.

The following shows the allowed redirections:

0< filename
< filename

1> filename
> filename

2> filename
2>&1

>& filename
>> filename
>>& filename
1>&2

read stdin from filename
read stdin from filename

write stdout to filename
write stdout to filename

write stderr to filename
write stderr to wherever stdout is currently going

write both stdout and stderr to filename
append stdout to filename
append both stdout and stderr to filename
write stdout to wherever stderr is currently going

Identifiers (A.6.3.3)

256 cha racters are significant in identifiers without externa l linkage. (Allowed
characters are letters. digits. and underscores.)

256 characters are sign ificant in identifiers with external linkage. (Allowed
characters are letters. digits. and underscores l

Case distinctions are signifi cant in identifiers with external linkage.

In -pee and -fe modes. the character ·s· is also valid in identifiers

Characters (A.6.3.4)

78

The characters in the source character set are ISO 8859-1 (Latin - I Alphabet). a
superset of the ASCII character set. The printable cha racters are those in the range
32 to 126 and 160 to 255. Any printable character may appear in a string or
character constant, and in a comment

The compi ler has no support for multi byte character sets.

C implementation details

The ARM C library supports the ISO 88'59-1 (Latin-I) character set. so the following

points hold

• The execution character set is identical to the source character scl.

• There are fou r c hars/bytes in an int. If the ARM processor is configured to
operate with a litt/e-endian memory system (as in RISC OS). the bytes are

ordered from least significant at the lowest address to most significant at the
highest address If the ARM is configured to operate wi th a biq-endian memory
system. the bytes are ordered from least significant at the highest address to
most significant at the lowest address.

• A character constant containing more than one character has the type int Up
to four characters of the constant are represented in the integer val uc The first
character contained in the constant occupies the lowest-addressed byte of the
integer value; up to th ree fol lowing characters are placed at ascending
addresses. Unused bytes are fi lled with the NULL (or /0) character

• There are eight bits in a character in the execution character set.

• All integer character constants that contain a single character or character
escape sequence are represented in the source and execution character set

• Characters of the source character set in string literals and character constants
map identically into the execution character set.

• No locale is used to convert multibyte characters into the corresponding wide
cha racters (codes) for a wide character constant

• A plain char is t reated as unsigned (but as signed in -pee mode)

• Escape codes are

Escape sequence Char value Description

\ a 7 Attention (bell)

\b 8 Backspace

\f 12 Form feed

\n 10 Newline

\r 13 Carriage return

\ t 9 Tab

\ v II Vertical tab

\ x nn Oxnn ASCI I code in hexadecimal

\nnn Onnn ASCII code in octal

79

Integers (A.6.3.5)

Integers (A.6.3.5)

The representations and sets of values of the integral types are set out in the
section Dala !'lemenls on page 70. Note also Lhal:

• The resu lt of converting an integer to a shorter signed integer. if the v<Jiue
cannot be represented. is as if the bits in the original value which cannot be
represented in the final value are masked out, and the resulting integer
sign-extended The same applies when you convert an unsigned integer to a
signed integer of equal length

• Bitwise operations on signed mtcgers yield the expected result g1ven two·s
complement representation No sign extension takes place

• The sign of the remainder on integer division is the same as defined lor the
function di v () .

• Right shift operations on signed integra l types are arithmetic

Floating point (A.6.3.6)

The representations and ranges of values of the noating point types have been
given in the section Data elements on page 70 Note also that

• When a floating point number is converted to a shorter floating [)oint one. it is
rounded to the nearest representable number.

• The properties of floating point mithmetic accord with IEEE 7'54 .

Arrays and pointers (A.6.3. 7)

80

The ANSI standard specifies three areCis in which the behaviour of arrays and
pointers must be documented. The pointe; to note are

• The type size_t is defined as unsigned i nt

• Casting pointers to integers and v1ce versa involves no change of
representation. Thus any integer obtamed by casting from a pointer will be
positive

• The type ptrdiff_t is defined as (signed) int.

C implementation details

Registers (A.6.3.8)
In the Acorn C compiler you can declare any number of objects to have the storage
class register. Depending on which variant of the ARM Procedure Call Standard
is in use. there are between five and seven registers available (There are six
available in the default APCS variant. as used by RISC OS 1 Declanng more than
this number of objects with register storage class must result in at least one of
them not being held in a register It is advisable to declare no more than four. The
valid types are:

• any integer type

• any pointer type

• any integer-l ike structure (any one word struct or un ion in wh ich all
addressable fields have the same address. or any one word structure
conta in ing only bitfields)

Note that other variables. not declared with the register storage class. may be
held in registers for extended periods; and that register variables may be held
in memory for some periods.

Note also that there is a #pragrna which assigns a file-scope variable to a
specified register everywhere within a compilation unit

Structures, unions, enumerations and bitfields (A.6.3.9)
The Acorn C compiler handles structures 1n the following way

• When a member of a union is accessed using a member of a dilferent type. the
resulting value can be predicted from the representation of the original type
No error is given.

• Structures are aligned on word boundaries Characters are aligned in bytes.
shorts on even numbered byte boundaries and all other types. except bitfields.
are aligned on word boundaries. Bitfields are subfields of ints. themselves
aligned on word boundaries.

• 1\ ·plain· bitfield (declared as int i is treated as unsigned int (signed
int in - pe e mode)

• 1\ bit fie ld which does not fit into the space rema ining in the current intis
placed in the next i nt.

• The order of al location of bitfields within i nts is such that the first field
specified occupies the lowest addressed bits of the word

• 13itfields do not straddle storage unit (inti boundaries

• The integer type chosen to represent the values of an enumeration type is int
(signed intl

81

Qualifiers (A.6.3.10)

Qualifiers (A.6.3.1 0)

An object that has volatile-qualified type is accessed if any word or byte of it is
read or written For volatile-qualified objects. reads and writes occur as directly
implied by the source code. in the order Implied by the source code

The effect of accessing a volatile-qualified short is undefined .

Declarators (A.6.3.11)

The number of declarators that may modify an arithmet ic. structure or union type
is limited only by available memory.

Statements (A.6.3.12)

The number o f case values in a switch sta tement is limited only by memory.

Preprocessing directives (A.6.3.13)

A single-character constant in a preprocessor directive cannot have a negative
value

The standard header files are contained within the compiler itself The mechanism
for translating the standard suffix notation to an Acorn filename is described in the
chapter CC and C++ on page II .

Quoted names for includable source files are supported. The rules for directory
searching are given in the chapter CC and C++ on page I I.

The recognized #pragma directives and their meaning are descnbed in the section
#pragma directives on page 86.

The date and time of translation are always ava ilable. so DATE_ and _TIME_
always give respect ively the date and time

Library functions (A.6.3.14)

82

The C library has or supports the following features:

• The macro NULL expands to the integer constant 0.

• If a program redefines a reserved external identifier. then an error may occur
when the program is linked with the standard libraries If it is not linked with
<;tandard libraries. then no error will be detected.

C implementation details

• The assert () function prints the following message:

*** assertion failed: expression, file filename, line, line-number

and then calls the function abort () .

• The functions isalnum() isalpha(). iscntrl(). islower()
ispr int () . is upper () and ispunct () usually test only for characters
whose values are in the range 0 to 127 (inclusive) . Characters with values
greater than 127 return a result of 0 for all of these functions. except
iscntrl () which returns non-zero for 0 to 31. and 128 to 255

After the call setlocale (LC_CTYPE, "IS08859-1") the following statements
also apply to character codes and affect the results returned by the ct~pt> functions:

• codes 128 to 159 are control characters

• code~ 192 to 223 except 215 are upper case

• codes 224 to 255 except 247 are lower case

• codes 160 to 191. 215 and 247 are punctuation

The mathematical functions return the following values on domdin errors ·

Function Condition Returned value

log(x) X <= 0 -HUGE VAL
loglO(x) X <= 0 -HUGE VAL
sqrt(x) X < 0 -HUGE VAL
atan2(x,y) X = y = 0 -HUGE VAL
asin(x) abs(x) > 1 -HUGE VAL
acos(x) abs(x) > 1 -HUGE VAL

Where -HUGE_ VAL is written above. a number is returned wh1ch IS defined in the
header h . math Consult the err no variable for the error number.

The mathematical functions set errno to ERANGE on underflow range errors .

A domain error occurs if the second argument of fmod is zero. ond
-HUGE_ VAL returned.

The set of signals for the generic signal () function is as follows

SIGABRT Abort
SIGI'PE Arithmetic exception
SIGII .L Illegal instruction
SIC I NT Attention request from user
SIGSF:GV Bad memory access
SIGTERM Termination request
SIGSTAK Stack overflow

The default handling of all recognised signals is to print a diagnostic message and
call exit This default behaviour applies at program start-up

83

Library functions {A.6.3.14}

84

When a signal occurs. if func points to a function. the equivalent of
signal(sig, SIG_DFL); isfirstexecuted.

If the SIGILL signal is received by a handler specified to the signal function. the
default handling is reset.

The C library also has the following characteristics relating to 1/0:

• The last line of a text stream does not require a terminating newline character.

• Space characters written out to a text stream immediately before a newline
character do appear when read back in.

• No null characters are appended to a binary output stream.

• The file position indicator of an append mode stream is initially placed at the
end of the file.

• A write to a text stream does not cause the associated file to be truncated
beyond that point.

• The characteristics of file buffering are as intended by section 4.9.3 of the
standard.

• A zero-length file (on which no characters have been wrillen by an output
stream) does exist.

• The validity of filenames is defined by the host computer's filing system.

• The same file can be opened many times for reading. but only once for writing
or updating. A file cannot however be open for reading on one stream and for
writing or updating on another.

Note also the following points about library functions:

remove()

rename()

fprintf ()

fscanf()

ftell ()
and
fgetpos()

Cannot remove an open file.

The effect of calling the rename () function when the new
name already exists is dependent on the host filing system.
Not all renames are valid: examples of invalid renames include

("net:filel", "net:$.file2") and
("net:filel","adfs:file2").

Prints %p arguments in hexadecimal format (lower case) as if a
precision of 8 had been specified. If the variant form (%#p) is
selected, the number is preceded by the character@

Treats %p arguments identically to %x arguments.

Always treats the character- in a% (argument as a literal
character.

Set errno to the value of EDOM on failure .

C implementation details

perror()

calloc().
malloc()
and
realloc ()

abort ()

exit()

getenv()

Generates the following messCiges·

Error:

0

EDOM

ERANGE

ESIGNUM

others

M essage:

No error (errno = 0)

EDOM function argument out of range

ERANGE- function result not representable

ESIGNUM- illegal signal number to signal()
or raise()

Error code number has no associated
message

If the size of the area requested is zero. NULL is returned under
RISC OS 3.1 0. and non-NULL is returned under I~ISC OS 3. 50 ..

Closes all open files. and deletes all temporary li les.

The status returned by exit is the same value that was passed
toil. For a definition of EXIT_SUCCESS and EXIT FAILURE
refer to the header file stdlib . h.

Returns the value of the named RISC OS Environmental
variable. or NULL if the variable had no value For example

root = getenv ("C$libroot");
if (root== NULL) root = "$.arm.clib";

system() Used e1ther to CHAIN to another application or built-in
command or to CALL one as a sub-program When a program
is chained. all trace of the original program is removed from
memory and the chained program invoked If a program 1s
called (which is the default if no CHAIN: or CALL: precedes
the program name- a change from Release 2) . the calling
program and data are moved in memory to somewhere safe
and the cal lee loaded and started up. The return value from the
system() call is -2 (indicating a failure to invoke the
program) or the value of Sys$ReturnCode set by the called
program (0 indicates success).

strerror () The error messages given by this function are identical to those
given by the perror() function.

clock () Returns the time taken by the program since ils invocation, as
indicated by the host's operating system.

85

Extra features

Extra features
This section describes the following machine-specific features of the Acorn C
compiler

• #pragma directives

• special declaration keywords for functions and vanablcs

#pragma directives

86

Pragmas recognised by the compiler come in two forms:

#pragma -letter«digit»

and

#pragma ccno»feat ure-n ame

A short-form pragma given without a digit resets that pragma to its default state:
otherwise to the state specified.

For example:

#pragma -sl
#pragma nocheck stack

#pragma -p2
#pragma profile statements

The set of pragmas recognised by the compiler. together with their default settings.
varies from release to release of the compiler The current list of recognised
pragmas is.

Pragma name

warn implicit_fn_decls

check_memory_accesses

warn_deprecated

continue after hash error

(FP rl'gisler variable)

include_only_once

optimise_crossjump

optimise_multiple_loads

profile

profile statements

(integer register variable)

Short form Short 'No'
form

al * aO

cl cO *
dl * dO

el

fl-f4

il

jl *
ml *
pl

p2

rl-r7

eO *
fO *
iO *
jO

mO

pO *
pO *
rO *

Command
line option

-Wf
-zpcOil

-Wd

-zpjOil

-zpmOil

-p

-px

Pragma name Short form

check stack sO *
force _ top_ level tl

check_printf_formats vl

check scanf formats v2 -
side effects yO * -
optimise_cse zl *
In each case. the default setting is starred.

C implementation details

Short 'No' Command
line option form

sl -zpsOil

tO *
vO *
vO *
yl

zO -zpzOil

You can also globally set pragmas by options set in the command line passed to
the cc program (see the section Command lines on page 421: the preferred option to
usc is shown above. Where no option is shown for a pragma. it is because that
pragma may only sensibly be used locally, and shou ld be enabled/d isabled around
the particular program statements it is to affect.

Pragmas controlling the preprocessor

The pragma continue_after_ hash_error in effect implements a
#warning ... preprocessor directive. Pragma include_only _once asserts that
the containing #include file is to be included only once. and that if its name
recurs in a subsequent #include directive then the directive is to be ignored

The pragma force_top_level asserts that the containing #include file
should only be included at the top level of a file. A syntax error will result if the file
is included. say, within the body of a function

Pragmas controlling printf/scanf argument checking

The pragmas check_printf_ formats and check_scanf_formats control
whether the actual arguments to printf and scanf, respectively. are
type-checked aga inst the format designators in a litera l formal string.

Of course. calls using non-l iteral format strings cannot be checked . By default, all
ca lls invo lving literal format strings are checked.

Pragmas controlling optimisation

The pragmas optimise_crossjump. optimise_multiple_loads and
optimise_cse give fine control over where these optim isations are applied. For
example, it is sometimes advantageous to disable cross-jumping (the common tail
optimisation) in the critical loop of an interpreter: and it may be helpful in a timing
loop to disable common subexpression elimination and the opportunistic
optimisation of multiple load instructions to load multiples Note that the correct

87

#pragma directives

use of the volatile qualifier should remove most of the more obvious needs for
this degree of control (and volatile is also available in the Acorn C compiler's
-pee mode unless -strict is specified)

By default, functions are assumed to be impure. so function invocations are not
candidates for common subexpression elimination. Pragma noside_effects
asserts that the following function declarations (until the next #pragma
side_effects) describe pure functions, invocations of which can be common
subexprcssions See also the section __JJure on page 90.

Pragmas controlling code generation

88

Stack limit checking

The pragma nocheck_stack disables the generation of code at function entry
which checks for stack limit violation. In reality there is little advantage to turning
off this check: it typically costs only two instructions and two machine cycles per
function call . The one circumstance in which nocheck stack must be used is in
writing a signal handler for the SIGSTAK event. When this occurs, stack overflow
has already been detected, so checking for it again in the handler would result in a
fatal circu lar recursion.

Memory access checking

The pragma check_memory_accesses instructs the compiler to precede each
access to memory by a call to the appropriate one of

rt_rdnchk where n is I. 2. or 4, for byte. short. or long reads (respectively)
_rt_wrnchk where n is I, 2. or 4, for byte. short. or long writes (respectively).

Global (program~wide) register variables

The pragmas f0-f4 and r0-r7 have no long form counterparts. Each introduces
or terminates a list of extern, file-scope variable declarations. Each such
declaration declares a name for the same register variable. For example:

#pragma rl I* lst global register *I
extern int *sp;
#pragma r2 I* 2ndglobal register *I
extern int *fp, *ap; I* Synonyms *I
#pragma rO I* End of global declaration *I
#pragma fl I* lst global FP register *I
extern double pi;
#pragma fO I* End of global declaration *I

C implementation details

Any type that can be allocated to a register (see the section Registers (A 6 3 8) on
page 81 l can be allocated to a global register. Similarly. any floating point type can
be allocated to a floating point register variable

Global register r I is the same as register vI in the ARM Procedure Call Standard
(APCS). similarly, r2 equates to v2. and so on Depending on the APCS variant.
between five and seven integer registers (vl-v7. machine reg1sters R4-R I 01 and four
floating point registers (F4-F7l are available as register variables (There are six
integer registers available in the default APCS variant. as used by RISC OS.) In
practice it is probably unwise to use more than three global integer register
variables and 2 global floating point register variables

Provided the same declarations are made in each compilation unit, a global
register variable may exist program-wide

Otherwise. because a global register variable maps to a ca llee-saved register. its
value will be saved and restored across a ca ll to a funct ion in a compilation unit
which does not use it as a global register variable. such as a l ibrary function.

A corollary of the safety of direct calls out of a global-register-using compilation
unit. is that calls back into it are dangerous. In particular. a global-register-using
function called from a compilation unit which uses that register as a compiler
allocated register, will probably read the wrong values from its supposed global
register variables.

Currently, there is no link-time check that direct calls are sensible And even if
there were. indirect calls via function arguments pose a hazard which is harder to
detect Th1s facility must be used with care Preferably, the declaration of global
register variable should be made in each compilation unit of the program See also
the sect1on _global_reg(n) on page 90.

Special function declaration keywords
Several special function declaration options are available to tell the Acorn
C compiler to treat that function in a special way. None of these are portable to
other machines.

_ value_in_regs

This allows the compi ler to return a structure in registers rather than returning a
pointer to the structure. For example:

typedef struct int64_structt
unsigned int lo;
unsigned int hi;

) int 64;

__ value_in regs extern int64 mul64(unsigned a, unsigned b);

89

Special variable declaration keywords

See the appendix ARM procedure call standard on page 24 7 of the Desktop Tools guide
for details of the default way in which structures are passed and returned .

_ pure

By default. fu nctions are assumed to be impure (i e. they have side effects). so
function invocations are not candidates for common subexpression elimination.
_ pure has the same effect as pragma noside_effects. and asserts that the
function declared is a pure funct ion. invocations of which can be common
subexpressions.

Special variable declaration keywords

90

_ global_reg(n)

Allocates the declared variable to a global integer register variable. in the same
way as #pragma rn. The variable must have an integral or pointer type. See also
the secti on Global (program-wide) register variables on page 88.

_global_freg(n)

Allocates the declared va riable to a global floating point register va riable. in the
same way as #pragma fn . The va riable must have type float or double See also
the section Global (program-wide) register variables on page 88

Note that the global register. whether specified by keyword or pragmas. must be
declared in all declarations of the same variable Thus

int x ;
_ globa l reg(l) x;

is an error.

7 The C library

The shared C l ibrary is a relocatable module in the RISC OS ROM Applications
which are resident in memory at the same time can share it It provides all the

standard facilities of the language, as defined by the ANSI standard document.
Code using ca lls to the shared C library will be portable to other envi ronments if an
ANSI compi ler and library are available for that environment.

C and C++ programs are linked with a sma ll piece of code and data called Stubs,
which itself interfaces with the shared C library. The stubs contain your program's
copy o f the library's data. and an entry vector which allows your program to locate
library routines in the C library module. Stubs is found in the directory
AcornC C++.Libraries.clib.o.

Use of the shared C library:

• economises on RAM space when multiple C appl ications are running

• saves space on disc. benefiting users with single floppy disc drives

• makes programs load faster

• costs practically nothing at run time.
(For example, the Dhrystone benchmark runs just as quickly using the shared
C library as when linked stand-alone with ANSI Lib.)

Without the shared C library, it would not be possible to pack so much 1nto
Acorn CIC++

91

assert.h

92

assert.h

The assert macro puts diagnostics into programs When it is executed. if its
argument expression is fa lse. it wri tes information about the call that failed
(including the text of the argument. the name of the source file. and the source line
number. the last two of these being, respectively. the values of the preprocessing
macros FILE and LINE) on the standard error stream It then ca lls the
abort fu nction. If its argument expression is true. the assert macro returns no
va lue

H NDEBUG is #defined prior to inclusion of assert. h. ca lls to assert expand to
null statements. This provides a simple way to turn off the generation o f
diagnostics selectively.

Note that assert. h may be included more than once in a program with different
settings of NDEBUG.

The C library

ctype.h

ctype. h declares several functions useful for testing and mapping characters. In
all cases the argument is an int. the value of which is representable as an unsigned
char or equal to the value of the macro EOF If the argument has any other value.
the behaviour is undefined.

int isalnum(int c)

int isalph{int c)

int iscntrl(int C)

int isdigit (int c)

int isgraph(int c)

int islower(int C)

int isprint(int c)

int ispunct(int C)

int isspace(int c)

int isupper(int c)

int isxdigit(int C)

int tolower(int c)

int toupper(int c)

Returns true if cis alphabetic or numeric

Returns true if c is alphabetic

Returns true if c is a contro l character (in the ASCI I
locale)

Returns true if c is a decimal digit

Returns true if c is any printable character other
than space

Returns true if c is a lower-case letter

Returns true if cis a printable character (in the
ASCII locale this means Ox20 (space)-+ Ox7E (tilde)
inclusive)

Returns true if c is a pnntable character other than
a space or alphanumeric character

Returns true if cis a white space character viz.
space. newline. return. lmefeed. tab or vertical tab

Returns t rue if c is an upper-case letter

Returns true if cis a hexadecimal digrt. ie in 0 ... 9,
a ... f. orA F

Forces c to lower case if it is an upper-case letter,
otherwise returns the original value

Forces c to upper case if it is a lower-case letter.
otherwise returns the original value

93

errno.h

EDOM

ERANGE

ESIGNUM

94

errno.h

This file contains the definition of the macro errno. which is of type volatile
int It contains three macro constants defining the error conditions listed below

If a domain error occurs (an input argument is outside the domain over which the
mathematical function is defined) the integer expression errno acquires the
value of the macro EDOM and HUGE_ VAL is returned. EDOM may be used by
non-mathematica l functions.

A range error occurs if the result of a function cannot be represented as a double
value. If the result overflows (the magnitude of the result is so large that it cannot
be represented in an object of the specified type). the function returns the value of
the macro HUGE_ VAL. with the same sign as the correct value of the fu nction; the
integer expression errno acquires the value of the macro ERANGE If the result
underflows (the magnitude of the result is so small that it cannot be represented in
an object of the specified type). the function returns zero. the integer expression
errno acquires the value of the macro ERANGE ERANGE may be used by
non-mathematical functions.

If an unrecognised signal is caught by the default signa l handler. errno is set to
ESIGNUM.

The C library

float.h

This file contains a set of macro constants which define the limits of computation
on floating point numbers. These are discussed in the chapter C unplemenfation
details on page 69

95

limits.h

96

limits.h

This set of macro constants determines the upper and lower value limits for
integral objects of various types. as follows:

Object type Minimum value Maximum value
Byte (number of bits) 0 8
Signed char -128 127
Unsigned char 0 255
Char 0 255
Multibyte character (number () 1

of bytes)
Short int -Ox8000 Ox7fff
Unsigned short int 0 65535
lnt (-Ox7fffffff) Ox7fffffff
Unsigned int 0 Oxffffffff
Long int (-0x7fffffff) Ox7fffffff
Unsigned long int 0 Oxffffffff

See also the chapter C implementation details on page 69.

setlocale

lconv

The C library

locale.h

This file handles national characteristics. such as the different orderings
month-day-year (USA) and day-month-year (UK).

char *setlocale(int category, const char *locale)

Selects the appropriate part of the program's loca le as specified by the category
and locale arguments. The set locale function may be used to change or
query the program's entire current locale or portions thereof. Loca le information is
divided into the following types

LC COLLATE
LC CTYPE
LC MONETARY
LC NUMERIC
LC TIME
LC ALL

string collation
character type
monetary formatting
numeric string formatting
time formatting
entire locale

The locale string specifies which locale set of information is to be used. For
example.

setlocale(LC_MONETARY,"uk")

would insert monetary information into the lconv structure. To query the current
locale information. set the locale string to null and read the string returned.

struct lconv *localeconv(void)

Sets the components of an object with type struct lconv with values appropriate
for the formatting of numeric quanti lies (monetary and otherwise) according to the
ru les of the current locale. The members of the structure with type char * are
strings, any of which (except decimal_point) can point to "".to indicate that
the va lue is not available in the current locale or is of zero length The members
with type char are non-negative numbers. any of which can be CHAR_MAX to
indicate that the value is not available in the current locale. The members included
are described above.

97

locale.h

98

localeconv returns a pointer to the filled in object The structure pointed to by
the return value will not be modified by the program. but may be overwritten by a
subsequent call to the localeconv function In add1Uon. calls to the
setlocale function with categories LC_ALL. LC MONETARY. or LC_NUMERIC
may overwrite the contents of the structure

The C library

math.h

This file contains the prototypes for 22 mathematical functions. All return the type
double

Function

doubl e acos(double x)

double asin(double X)

double atan(double x)

Returns

arc cosine of x A domain error occurs
for arguments not 1n the range -I to I

arc sine of x. A domam error occurs for
arguments not in the range - I to I

arc tangent of x

double atan2(double x, double y) arctangcntofy/x

double cos(double x)

double sin(double x)

double tan(double x)

double cosh(double X)

double sinh(double x)

double tanh(double x)

double exp(double x)

double frexp(double x, int

double ldexp(double x, int

double log(double x)

double loglO(double x)

cosine of x (me<:lsured in radians)

sine of x (measured in radians)

tangent of x (measured in radians)

hyperbolic cos ine of x

hyperboliC sine of X

hyperbolic tangent of x

exponential function of x

*exp) the va lue x such that x is a
double w1th magn1tude in the interval
0 5 to I 0 or zero. and value equals x
times 2 raised to the power *exp

exp) x times 2 raised to the power of exp

natura l logarithm of x

log to the base I 0 of x

double rnodf (double x, double * iptr) signed fract iona l part of x .

double pow(double x, double y)

double sqrt(double x)

double ceil(double x)

double fabs(double x)

Stores integer part of x in object
pointed to by iptr

x raised to the power of y

positive square rool of x

smallest integer not less than x (ie
rounding up)

absolute va lue o f x

double floor(double x) largest integer not greater than x (ie
round ing down)

double fmod(double x, double y) floating-point remainder of x!y

99

setjmp.h

setjmp

longjmp

100

setjmp.h

This file declares two functions. and one type, for bypassing the normal function
call and return discipline (useful for dealing with unusual conditions encountered
in a low-level function of a program). It also defines the jmp_buf structure type
required by these routines.

int setjmp(jmp_buf env)

The ca ll ing environment is saved in env, for later usc by the longjmp function. If
the return is from a direct invocation, the setjmp funclion returns the value Lero.
If the return is from a ca l l to the longjmp functi on. the setjmp function returns a
non-zero value.

void longjmp(jmp_buf env, int val)

The environment saved in env by the most recent cal l to setjmp is restored If
there has been no such call. or if the function containing the call to setjmp has
terminated execution (eg with a return statement) in the interim. the behaviour is
undefined All accessible objects have values as at the Ume longjmp was called.
except that the values of objects of automatic storage duration that do not have
volatile type and that have been changed between the setjmp and longjmp calls
are indeterminate

As it bypasses the usual function call and return mechanism. the longjmp
function executes correctly in contexts of interrupts. signals and any of their
associated functions. However. if the longjmp function is invoked from a nested
signa l handler (that is. from a function invoked as a resu lt of a signal raised during
the handling o f another signa l). the behaviour is undefined

After longjrnp is completed. program execution continues as if l he corresponding
ca ll to setjmp had just returned the value specified by val . The longjmp
functi on cannot ca use setjrnp to return the value 0: if val is 0. setjmp returns
the value l .

The C library

signal.h

Signal declares a type (sig_atomic_t) and two functions

It also defines several macros for handling vanous s1gnals (conditions that may be
reported during program execution) These are SIG_ DFL (default routine).
SIG_ IGN (ignore signal routine) and SIG_ ERR (dummy rout1ne used to flag error
return from signal).

void (*signal (int sig, void (*func)(int)))(int)

Think of this as

typedef void Handler(int);
Handler *signal(int, Handler *);

Chooses one of three ways in which receipt of the signal number sig is to be
subsequently handled. If the value of func is SIG DFL, default handling for that
signal wi ll occur. If the value o f func is SIG_ IGN, the signal wil l be ignored.
Otherwise func points to a function to be ca lled when that signal occurs

When a signal occurs. i f func points to a fu nction. first the equ iva lent o t
signal(s i g, SIG_DFL) is executed. (If the va lue of s i g is SIGILL. whether
the reset to SIG_ DFL occurs is implementation-defined (under RISC OS the reset
does occur)) Next. the equivalent of (*func) (sig) . IS executed The function
may terminate by calling the abort. ex i t or l ong j mp function If func executes
a return statement and the value of sig was SIGFPE or any other
implementation-defined value correspond ing to a computational exceptiOn. the
behaviour is undefined. Otherwise. the program will resume execution at the point
it was interrupted.

If the signa l occurs other than as a result of ca lling the abort or raise function.
the behaviour is undefined if the signal handler ca ll !> any fu nction in the standard
library other than the signal functi on itsel f or refers to any object with static
storage duration other than by ass igning a va lue to a volatile static variable of type
sig_ atomic_t At program start-up, the equ ivalent o f signal (sig,
SIG_ IGN) may be executed for some signals selected in an
implementation-defined manner (under RISC OS thi s does not occur) : the
equivalent of signal (sig, SIG_ DFL) is executed for al l other signa ls defi ned
by the implementation.

If the request can be honoured. the signal fu nction retu rns the va lue of func for
most recent call to signal for the specified signa l sig Otherwise, a value of
SIG_ ERR is returned and the integer expression errno 1s set to Indicate the error

101

signal.h

raise

102

int raise(int /*sig*/)

Sends the signal sig to the executing program. Returns zero if succc~sful. non-zero
if unsuccessful

va list

va start

va_arg

The C library

stdarg .h

This file declares a type and defines three macros. for advancing through a list of
arguments whose number and types are not known to the called function when it is
translated A function may be called with a variable number of arguments of
differing types. Its parameter list contains one or more parameters. the rightmost
of which plays a special role in the access mechanism. and will be called parmN in
this description.

char *va_list(l)

An array type suitable for holding information needed by the macro va_arg and
the fu nction va_ end. The ca lled function declares a variable (referred to as ap)
having type va_list. The variable ap may be passed as an argument to another
function. va_list is an array type so that when an object of that type is passed as
an argument it gets passed by reference. but this is not required by the ANSI
specification and cannot be relied on.

The va_start macro will be executed before any access to the unnamed
arguments The parameter ap points to an object that has type va_list. The
va_start macro initialises ap for subsequent use by va_arg and va_end. The
parameter parmN is the identifier of the rightmost parameter in the variable
parameter list in the function definition (the one just before the , . •.) If the
parameter parmN is declared with the register storage class the behaviour is
undefined.

Returns: no value.

The va_arg macro expands to an expression that has the type and va lue of the
next argument in the call. The parameter ap is the same as the va_list ap
initialised by va_start . Each invocation of va_arg modifies ap so that
successive arguments are returned in turn. The parameter type is a type name
such that the type of a pointer to an object that has the specified type can be
obtained simply by postfixing a * to type. If type disagrees with the type of the
actual next argument (as promoted according to the default argument
promotions). the behaviour is undefined.

103

stdarg.h

va end

104

Returns The fi rst invocation of the va_ arg macro after that of the va_ start
macro returns the value of the argument after that specified by parmN Successive
invocat ions return the values of the remaining arguments in succession Care is
taken m va_ arg so that illegal things l ike va_arg (ap, char) - which may seem
natural but are in fact i llegal- are caught va_arg (ap, float) is wrong but
cannot be patched up at the C macro level

#define va_end(ap) ((void)(*(ap) = (char *)-256))

The va_ end macro facilitates a normal return from the runction whose va riable
drgumcnllist was referenced by the expansion of va_ start that in itialised the
va_ list ap. If the va_end macro is not i nvokcd before the return. the behaviour
is undefined.

The C library

stddef.h

This file con tcJins a macro for calculating the offset of fields within a structu re. It
also defines the pointer constant NULL and three types.

ptrdiff t (here int) the signed integral type of the result of
subtracting two pointers

size_ t (here unsigned int) the uns1gned integral type of the result of
the sizeof operator

wchar_ t (here int) also in stdlib . h . An integral type whose
range of values can represent d istinct codes
for all members of the largest extended
character set specified among the supported
loca les; the null character has the code
va lue zero and each member of the bas ic
character set has a code va lue when used as
the lone character in an integer character
constant

size t offsetof (type, member) expands to an integral conste~nt
expression that has type size_t. the va lue
of which is the offset in bytes from the
beginning of a structure des ignated by
type, of the member designated by
member (if the specified member is a
bit-field, the behaviour is undefined)

105

stdio.h

remove

rename

106

stdio.h

stdio declares two types. several macros. and many functions for performing
input and output For a discussion on Streams and riles refer to sections 4 9 2 and
4 9 3 tn the ANSI standard or to one of the other references given in the Introduction
to this Guide

fpos_ t

FILE

fpos_ tis an object capable of recording all information needed
to specify uniquely every position within a file

is an object capable of record ing all information needed to
control a stream. such as its fil e position indicator. a pointer to its
associated buffer. an error indi ca tor that records whether a
read/write error has occurred and an end-of-fi le ind icator that
records whether the end-of-file has been reached. The objects
contained in the #ifdef _system_ io clause are for system
use only, and cannot be relied on between releases of C.

int remove(const char * filename)

Causes the file whose name is the string pointed to by filename to be removed
Subsequent attempts to open the file will fail. unless 1t IS created anew If the file is
open. the behaviour of the remove function is implementation-defined 1 under
RISC OS the operation fails).

Returns zero if the operation succeeds. non-zero if it fails.

int rename(const char * old, const char * new)

Causes the file whose name is the string pointed to by old to be henceforth known
by the name given by the string pointed to by new. The file named old is
effectively removed. If a fi le named by the string pointed to by new exists prior to
the ca ll o f the rename function. the behaviour is implementation-defined (under
I~ISC OS. the operation fails)

Returns zero if the operation succeeds. non-zero if it fails. in which case if the file
exi'>ted previously it is still known by its original name.

tmpfile

tmpnam

fclose

The C library

FILE *trnpfi l e(void)

Creates a temporary binary file that wil l be automatically removed when it is
closed or at program termination . The file is created 1f possible in
Wirnp$ScrapDir. or fail ing that. in the di rectory $. trnp. 1t IS then opened for
update

Returns a pointer to the stream of the file that it created If the lile cannot be
created. a null pointer is returned.

char *trnpnarn(c h ar * s)

Generates a string tha t is not the same as the name or an exisl i ng file. The t rnpna rn
runclion generates a different string each time it is ca lled. up to TMP _ MAX t imes. If
it is ca l led more than TMP_ MAX times. the behaviour is implementation-defined
(under RISC OS the algorithm for the name generation works just as well after
trnpnam has been called more than TMP _ MAX times as before; a name clash is
impossible in any single half year period).

Returns If the argument is a null pointer. the trnpnam function leaves its result in
an internal static object and returns a pointer to that object Subsequent calls to
the trnpnam function may modify the same object If the argument IS not a null
pointer. it is assumed to point to an array of at least L trnpnarn cha racters; the
trnpnam function writes its result in that array and ret urns the argument as its
value

int fclose(FILE * stream)

Causes the stream pointed to by stream to be flushed and the associated fi le to
be closed. Any unwritten buffered data for the stream are delivered to the host
environment to be written to the fi le: any unread buffered data arc disca rded. The
stream is disassociated from the fi le If the associated buffer was automatica lly
allocated. it is deallocated.

Return s: zero if the stream was successfu lly closed. or EOF if any errors were
detected or if the stream was already closed.

107

stdio.h

fflush

fop en

108

int fflush(FILE * stream)

If the stream points to an output or update stream in which the most recent
operation was output. the fflush function causes any unwritten data for that
stream to be delivered to the host environment to be written to the file If the
stream points to an input or update stream. the fflush function undoes the
effect of any preced ing ungetc operation on the stream

Returns. EOF if a write error occurs.

FILE *fopen(const char * filename, canst char * mode)

Opens the fil e whose name is the string pointed to by filename. and associates
a stream with it. The argument mode points to a string beginning with one of the
following sequences:

r
w
a
rb
wb
ab
r+
w+
a+
r+b or rb+
w+b or wb+
a+b or ab+

open text file for reading
create text file for writing. or truncate to zero length
append; open text file or create for writing at eof
open binary file for reading
create binary file for writing. or truncate to zero length
append· open binary file or create for writing at eof
open text file for update (reading and writing}
create text file for update. or truncate to zero length
append; open text file or create for update. writing at eof
open binary file for update (reading and writmg}
create bina ry file for update or truncate to zero length
append; open binary file or create for update. writing at
eof

• Opening a file with read mode (r as the first character in the mode argument)
fai ls if the file does not exist or cannot be read

• Opening a file with append mode (a as the first character in the mode
argument) causes all subsequent writes to be forced Lo the cu rrent end of file.
regardless o f interven ing calls to the fseek funclion.

• In some implementations. opening a binary file with append mode (bas the
second or third character in the mode argument) may initially position the file
position indicator beyond the last data written because of null padding (but
not under RISC OS)

freopen

setbuf

The C library

• When a file is opened with update mode(+ as the second or third character in
the mode argument). both input and output may be performed on the
associated stream. However. output may not be directly followed by input
wrthout an intervening call to the fflush function or to a file positioning
function (fseek. fsetpos. or rewind). nor may input be directly followed
by output without an intervening call to the fflush function or to a file
positioning function. un less the input operation encounters end-of-file.

• Opening a file with update mode may open or create a binary stream in some
implementations (but not under RISC OS). When opened. d ~lredm is fully
buffered if and only if it does not refer to an interactive device. The error and
end of-fi le indicators for the stream are cleared

Returns: a pointer to the object controlling the stream. If the open operation fails.
fopen returns a null pointer.

FILE *freopen(const char * filename, const char * mode,
FILE * stream)

Opens the file whose name is the string pointed to by filename and associates
the stream pointed to by stream with it. The mode argument is used JUSt as in the
fopen function The freopen function first attempts to close any file that is
associated with the specified stream. Failure to close the file successfully is
ignored The error and end-of-file indicators for the stream are cleared

Returns a null pointer if the operation fails Otherwrse. freopen returns the value
of the stream

void setbuf(FILE * stream, char * but)

Except that it retu rns no value. the setbuf function is equiva lent to the setvbuf
function invoked with the values _JOFBF for mode and BUI'SJZ for size. or if but
is d null pointer. with the value _JONBF for mode.

Returns: no value.

109

stdio.h

setvbuf

fprintf

110

int setvbuf(FILE * stream, char * but , int mode, size t
size)

This may be used after the stream pointed to by stream has been associated with
an open file but before it is read or written . The argument mode determines how
stream will be buffered, as follows

• IOFBF causes input/output to be fully buffered.

• _IOLBF causes output to be line buffered (the buffer wi ll be flushed when a
newline character is written, when the buffer is full, or when interactive input is
requested).

• _IONBF causes input/output to be completely unbuffered.

If but is not the null pointer. the array it points to may be used instead of an
automatically allocated buffer (the buffer must have a lifetime at least as great as
the open stream, so the stream shou ld be closed before a buffer that has
automatic storage duration is deallocated upon block exit) . The argument size
specifies the size of the array. The contents of the array at any time are
indeterminate. but must be non-null.

Returns: zero on success. or non-zero if an invalid value is given for mode or size.
or if the request cannot be honoured.

int fprintf(FILE *stream, const char* format, .. .)

writes output to the stream pointed to by stream, under control of the string
pointed to by format that specifies how subsequent arguments are converted for
output If there are insufficient arguments for the format. the behaviour is
undefined. If the format is exhausted while arguments remain. the excess
arguments are evaluated but otherwise ignored. The fprintf function returns
when the end of the format string is reached. The format must be a multibyte
character sequence. beginning and ending in its initial sh ift state (in all locales
supported under RISC OS this is the same as a plain character string). The format
is composed of zero or more directives: ordinary multi byte characters (not 0/o).
which are copied unchanged to the output stream; and conversion specifiers. each
of which results in fetching zero or more subsequent arguments. Each conversion
specification is introduced by the character%. For a complete description of the
available conversion specifiers refer to section 4.9.6.1 in the ANSI standard or to
one of the other references in the Introduction to this Guide The minimum value for
the maximum number of characters that can be produced by any single conversion
is at least 509

printf

The C library

A brief and incomplete description of conversion specifications is

[flags](field width](.precision]specifier-char

flags is most commonly - . indicating left justification of the output item within
the field If omitted, the item will be right justified

field width is the minimum width of field to use. If the formatted item is
longer. a bigger field will be used; otherwise. the item will be right [left) justified in
the field.

precision is the minimum number of digits to print for a d. i. o. u. x or X
conversion, the number of digits to appear after the decimal digit for e. E and f
conversions. the maximum number of significant digits for g and G conversions. or
the maximum number of characters to be written from strings in an s conversion.

Either or both of field width and precision may be*. indicating that the
value is an argument to print£.

The specifier chars are:

d, i
o, u,

f
e, E

g, G

c
s
p
%

x, X

int printed as signed decimal
unsigned int va lue printed as unsigned octal. decimal or
hexadecimal
double value printed in the style (-] ddd. ddd
double va lue printed in the style [-]d . ddd ... e dd
double printed in fore format. whichever is more
appropriate
int value printed as unsigned char
char * value printed as a string of characters
void * argument printed as a hexadecimal address
write a literal %

Returns: the number of characters transmitted. or a negative value if an output
error occurred.

int printf(const char* format, ••.)

Equivalent to fprintf with the argument stdout interposed before the
arguments to print£.

Returns: the number o f characters transmitted. or a negative va lue if an output
error occurred.

111

stdio.h

sprintf

fscanf

112

int sprintf(char * s, const char* format, .. .)

Equivalent to fprintf . except that the arguments specifies an array into which
the generated output is to be written. rather than to a stream A null character is
written at the end of the characters written. it is not counted as part of the returned
sum

l~eturns the number of characters written to the array. not counting the
terminating null character.

int fscanf(FILE *stream, const char* format, ...)

l~eads input from the stream pointed to by stream. under cont rol o f the string
pointed to by format that specifies the admiss ible input sequences and how they
are to be converted for assignment. using subsequent argumen ts as pointers to the
objects to receive the converted input. If there dre in~ufficien t arguments for the
format. the behaviour is undefined If the format is exhausted while arguments
remain. the excess arguments are evaluated but otherwise ignored The format is
composed of zero or more directives. one or more white-space characters. an
ordinary character (not%). or a conversion specification . Each converston
specificat ion is introduced by the character%. For a description of the available
conversion specifiers refer to section 4 9.6.2 in the ANSI standard. or to any of the
references listed in the chapter Introduction on page I A brief list is given above.
under the entry for fprintf .

If end-of-file is encountered during input. conversion is terminated . If end-of-file
occurs before any cha racters matching the current directive have been read (other
than leading white space. where permitted). execution of the current directive
terminates with an input failure: otherwise. unless execution ol the cu rrent
direct ive is terminated with a matching failure. execution of the following directive
(if any) is terminated with an input fa ilure.

If conversions terminate on a conflicting input character. the o ffending input
character is left unread in the input stream. Trailing white space (includ ing newline
characters) is left unread unless matched by a d irective. The success of l itera l
matches and suppressed assignments is not directly determinable other than via
the %n directive.

Returns the va lue o f the macro EOF if an input failure occurs before any
conversion. Otherwise. the fscanf function returns the number of input items
assigned. which can be fewer than provided for. or even Lero. in the event of an
early conflict between an input character and the format.

scanf

sscanf

vprintf

vfprintf

The C library

int scanf(const char* format, ...)

EqUivalent to fscanf with the argument stdin interposed before the arguments
to scanf

Returns the value of the macro EOF if an input failure occurs before any
conversion Otherwise, the scanf function returns the number of input items
assigned. which can be fewer than provided for. or even zero. in the event of an
early matching failure.

int sscanf(const char* s, const char* format, .. .)

Equivalent to fscanf except that the arguments specifies a string from which the
input is to be obtained, rather than from a stream. Reaching the end of the string is
equ ivalent to encountering end-of-file for the fscanf function .

Returns: the value of the macro EOF if an input failure occurs before any
conversion. Otherwise, the scanf function returns the number of input items
assigned. which can be fewer than provided for. or even zero. in the event of an
early matching failu re

int vprintf(const char * format, va_list arg)

Equivalent to printf. with the variable argument list replaced by arg, which has
been initialised by the va_start macro (and possibly subsequent va_arg calls).
The vprintf function does not invoke the va_end function

Returns: the number of characters transmitted. or a negative value if an output
error occurred.

int vfprintf(FILE * stream,const char * format, va_list
arg)

Equivalent to fprintf. with the variable argument list replaced by arg. which
has been initialised by the va_start macro (and possibly subsequent va_arg
calls) The vfprintf function does not invoke the va_end function

Returns : the number of characters transmitted or a negat1ve value if an output
error occurred

11 3

stdio.h

vsprintf

fgetc

fgets

114

i nt vsprintf(char * s, const char * format, va_list arg)

Equivalent to sprintf. with the variable argument list replaced by arg. which
has been initialised by the va_start macro (and possibly subsequent va_arg
calls) The vsprintf function does not invoke the va_end function

Returns: the number of characters written in the array. not counting the
terminating null character.

int fgetc(FILE * stream)

Obtains the next character (if present) as an unsigned char converted to an int.
from the input stream pointed to by stream. and advances the associated file
position indicator (if defined).

r~eturns: the next character from the input stream pointed to by stream. If the
stream is at end-of-fi le. the end-of-file indicator is set and fgetc returns EOF If a
read error occurs, the error indicator is set and fgetc returns EOF

char *fgets(char * s, int n, FILE * stream)

Reads at most one less than the number of characters specified by n from the
stream pointed to by stream into the array pointed to by s No additional
characters are read after a newline character (which is retained) or after end-of-file.
A null character is written immediately after the last character read into the array.

Returns: s if successfu l. If end-of-file is encountered and no characters have been
read into the array, the contents of the array remain unchanged and a null pointer
is returned. If a read error occurs during the operation, the array contents are
indeterminate and a null pointer is returned.

fputc

fputs

getc

getchar

The C library

int fputc(int c, FILE * stream)

Writes the character specified by c (converted to an unsigned char) to the output
stream pointed to by stream. at the position ind icated by the associated file
posit ion indicator (if defi ned). and advances the indicator appropnately If the file
cannot support position ing requests. or if the stream was opened with append
mode. the character is appended to the output stream

r~etu rns : the character written. If a write error occurs. the error ind icator is set and
fputc returns EOF

int fputs(const char * s, FILE * stream)

Writes the string po inted to by s to the stream pointed to by stream. The
terminating null character is not written .

Returns: EOF if a write error occurs; otherwise it returns a non-negat ive value

int getc(FILE * stream)

Equivalent to fgetc except that it may be (and is under RISC OS) implemented as
a macro stream may be eva luated more than once. so the argument should never
be an express1on with side effects.

Returns the next character from the input stream pointed to by stream If the
stream is at end-of-file. the end-of-file indicator is set and getc returns EOF If a
read error occurs. the error indicator is set and getc returns EOF

int getchar(void)

Equivalent to getc with the argument stdin.

Returns: the next character from the input stream pointed to by stdin. If the
stream is at end-of-file, the end-of-file indicator is set and getchar retu rns EOF
If a read error occurs. the error indicator is set and getchar returns EOP.

115

stdio.h

gets

putc

putchar

puts

116

char *gets(char * s)

Reads characters from the input stream pointed to by stdin into the array
pointed to by s. until end-of-file is encountered or a newline character is read. Any
newline character is discarded. and a null character is written immediately after the
last character read into the array

Returns: s if successful. If end-of-file is encountered and no characters have been
read mto the array. the contents of the array remain unchanged and a null po1nter
is returned If a read error occurs during the operation. the array contents are
indeterminate and a null pointer is retu rned.

int putc(int c, FILE * stream)

Equivalent to fputc except that it may be (and is under RISC OS) implemented as
a macro stream may be evaluated more than once. so the argument should never
be an expression with side effects.

Returns the character written If a write error occurs. the error indicator is set and
putc returns EOF

int putchar(int c)

Equivalent to putc with the second argument stdout.

Returns the character written If a write error occurs the error indicator ts set and
putc returns EOF

int puts(const char * s)

Writes the string pointed to by s to the stream pointed to by stdout, and
appends a newline character to the output. The terminating null character is not
written

Returns EOF if a write error occurs. otherwise it returns a non-negattve value

ungetc

fread

The C library

int ungetc(int c, FILE * stream)

Pushes the character specified by c (converted to an unsigned chan back onto the
input stream pointed to by stream. The character will be returned by the next
read on that stream An intervening call to the fflush function or to a file
positioning function (fseek. fsetpos . rewind) discards any pushed-back
characters The external storage corresponding to the stream is unchanged. One
character pushback is guaranteed. If the unget function is cal led too many times
on the same stream without an intervening read or file posit ioning operation on
that stream. the operation may fail If the value of c equals that of the macro EOF,
the operation fails and the input stream is unchanged.

A successfu l ca ll to the ungetc function clears the end-of-file indicator. The value
of the file position indicator after reading or discard ing all pushed-back cha racters
will be the same as it was before the cha racters were pushed back. For a text
stream, the value of the file position indicator after a successfu l ca ll to the ungetc
function is unspecified until all pushed-back characters are read or discarded. For
a binary stream. the file position indicator is decremented by each successfu l ca ll
to the ungetc function: if its value was zero before a call. it is indeterminate after
the call

Returns the character pushed back after conversion. or EOF if the operation fails

size t fread(void * ptr,size_t size,
size_t nmemb, FILE * stream)

Reads into the array pointed to by ptr. up to nmemb members whose size is
specified by size. from the stream pointed to by stream The file position
indicator (if defined) is advanced by the number of characters successfully read. If
an error occurs. the resulting value of the file position ind icator is indeterminate. If
a partial member is read, its value is indeterminate. The ferrer or feof function
shall be used to distinguish between a read error and end-of-fi le.

Rei urns: the number of members successfu lly read, which may be less than nmemb
if a read error or end-of-fi le is encountered. If size or nmemb is zero. fread
returns zero and the contents of the array and the state of l he sl ream remain
unchanged

117

stdio.h

fwrite

fgetpos

fseek

118

size_t fwrite(const void * ptr,
size_t size, size_t nmemb, FILE * stream)

Writes. from the array pointed to by ptr up to nmemb members whose size is
specified by size. to the stream pointed to by stream The file position indicator
(if defined) is advanced by the number of characters successfully written. If an error
occurs. the resulting value of the file position indicator is indeterminate.

Returns: the number of members successfully written. which will be less than
nrnernb only if a write error is encountered.

int fgetpos(FILE * stream, fpos_t * pos)

Stores the current value of the file position indicator for the stream pointed to by
stream in the object pointed to by pos. The value stored contains unspecified
information usable by the fsetpos function for repositioning the stream to its
position at the time of the call to the fgetpos function

Returns zero, if successful. Otherwise non-zero is returned and the integer
expression errno is set to an implementation-defined non-zero value (under
RISC OS fgetpos cannot fail).

int fseek(FILE * stream, long int offset, int whence)

Sets the file position indicator for the stream pointed to by stream For a binary
stream. the new position is at the signed number of characters specified by
offset away from the point specified by whence. The specified point is the
beginning of the file for SEEK_ SET, the current position in the file for SEEK_CUR.
or end-of-file for SEEK_END. A binary stream need not meaningfully support
fseek calls with a whence value of SEEK_END, though the Acorn
implementation does. For a text stream. offset is either zero or a value returned
by an earlier ca ll to the ftell function on the same stream; whence is then
SEEK_SET. The Acorn implementation also allows a text stream to be positioned
in exactly the same manner as a binary stream. but this is not portable. The fseek
function clears the end-of-file indicator and undoes any effects of the ungetc
function on the same stream. After an fseek call. the next operation on an update
stream may be either input or output

Returns: non-zero only for a request that cannot be satisfied .

fsetpos

ftell

rewind

The C library

i nt fset pos(FILE * stream, const fpos_ t * p os)

Sets the file position indicator for the st ream pomted to by s tre am according to
the value of the object pointed to by pos. whiCh is a value returned by an earlier
call to the fgetpos funct ion on the same stream. The fsetpos function clears
the end-of-file ind icator and undoes any effects of the ungetc function on the
same st ream. After an fsetpos call. the next operation on an update stream may
be either inpu t or output.

Returns zero. if successful. Otherwise non-zero is returned and the integer
expression errno is set to an implementati on-defined non-zero value (under
RISC OS the value is that o f EDOM in math. h) .

long int ftell(FILE * stream)

Obta ins the current value of the file pos ition indicator for the stream pointed to by
stream For a binary stream. the value is the number of ch<Hacters from the
beginning of the file. For a text stream. the fil e pos ition indicator contains
unspecified information. usable by the fseek funct ion for returning the fi le
pos1tion indicator to its position at the time of the ftell call. the difference
between two such return values is not necessarily a meaningful measure of the
number of characters written or read . However. for the Acorn implementation the
value returned is merely the byte offset into the file. whether the stream is text or
binary

Returns if successful. the current va lue of the file position indicator On failure. the
ftell function retu rns -1 L and sets the integer expression errno to an
implementation-defined non-zero value (under RISC OS ftell cannot fa i l l

void rewind(FILE * stream)

Sets the fi le position indicator for the stream pointed to by stream to the
beginning of the file. It is equivalent to (void) fseek (stream, OL,
SEEK_ SET) except that the error ind icator for the stream is also clea red.

Retu rns no va lue

119

stdio.h

clearerr

feof

ferror

perror

120

void clearerr{FILE * stream)

Clears the end-of-file and error indicators for the stream pointed to by stream.
These indicators are cleared on ly when the file is opened or by an explicit call to
the clearerr function or to the rewind function

Returns. no value.

int feof{FILE * stream)

Tests the end-of-file indicator for the stream pointed to by stream.

l~eturns· non-zero if the end-of-file indicator is set for stream.

int ferror{FILE * stream)

Tests the error indicator for the stream pointed to by stream

Returns non-zero 1f the error indicator is set for stream.

void perror{const char * s)

Maps the error number in the integer expression errno to an error message It
writes a sequence of characters to the standard error stream thus first (if sis not a
nu II pointer and the cha racter pointed to by s is not the null character). the string
pointed to by s followed by a colon and a space; then an appropriate error
message string followed by a newline character The contents of the error message
strings are the same as those returned by the strerror function with argument
errno. which are implementation-defined

Returns: no va lue.

at of

atoi

atol

strtod

The C library

stdlib.h

stdlib. h declares four types several general purpose functions. and defines
several macros

double atof(const char * nptr)

Converts the initial part of the string pointed to by nptr to double •
representation.

Returns: the converted value.

int atoi(const char * nptr)

Converts the initial part of the string pointed to by nptr to int representation.

Returns the converted value.

long i nt atol(const char * nptr)

Converts the initial part of the string pointed to by nptr to long int
representation.

J~eturns the converted value.

double strtod(const char * nptr, char ** endptr)

Converts the initial part of the string pointed to by nptr to double representation.
First it decomposes the input string into three parts: an inilial. possibly empty.
sequence o f white-space characters [as specified by the is space function). a
subject sequence resembling a floa ting point constant. and a final string of one or
more unrecognised characters. including the terminating null character of the
input string. It then attempts to convert the subject sequence to a floating point
number. and returns the result. A pointer to the final string is stored in the object
pointed to by endptr. provided that endptr is not a null pointer

121

stdlib.h

strtol

strtoul

122

Returns the converted value if any. If no conversion could be performed. zero is
returned II the correct value is outside the range of representable va lues. plus or
minus HUGE_ VAL is returned (according to the sign of the value). and 1 he value of
the macro ERANGE is stored in errno. If the correct value would ca use undcrnow.
zero is returned and the value of the macro ERANGE is stored in errno.

long i nt strtol(const char * nptr, char **endptr, i nt
base)

Converts the initial part of the string pointed to by nptr to long int
representation First it decomposes the input string into three parts an initia l.
possibly empty. sequence of white-space characters (as specified by the is space
function), a subject sequence resembling an integer represented in some radix
determined by the value of base. and a final string o f one or more unrecognised
characters. including the terminating null character of the input string

It then attempts to convert the subject sequence to an integer and returns the
result If the value of base is 0. the expected form of the subject sequence 1s that of
an integer constant {described precisely in the ANSI standard. section 3.1 3 21 .
optionally preceded by a + or - sign, but not including an integer suffix If the value
of base is between 2 and 36. the expected form of the subject sequence is d

sequence of letters and digits representing an integer with the radix specified by
base. optiona lly preceded by a plus or minus sign , but not including an integer
suffix. The lellers from a (orAl through z (or Zl are ascribed the values 10 to 35:
only letters whose ascribed values are less than that o f the base are permitted If
the va lue of base is 16. the characters Ox or OX may optionally precede the
sequence of letters and digits following the sign if present. A pointer to the final
string is stored in the object pointed to by endptr. provided that endptr is not a
null pointer

Returns the converted value if any If no conversion could be performed. zero is
returned . If the correct value is outside the range of representable values.
LONG_MAX or LONG_MIN is returned (according to the sign of the value). and the
value of the macro ERANGE is stored in errno.

unsigned long int strtoul(const char * nptr, char **
endptr, int base)

Converts the initial part of the string pointed to by nptr to uns1gned long int
representation First it decomposes the input string into three parts an initial.
possibly empty, sequence of white space characters (as determined by the

rand

srand

The C library

isspace function). a subject sequence resembling an unsigned integer
represented in some radix determined by the value of base. and a final string of
one or more unrecognised characters. including the terminating null character of
the input string.

It then attempts to convert the subject sequence to an unsigned integer. and
returns the result. If the value of base is zero. the expected form of the subject
sequence is that of an integer constant (described precisely in the ANSI Draft.
section 3.1.3.2). optionally preceded by a+ or- sign, but not including an integer
suffix. If the value of base is between 2 and 36. the expected form of the subject
sequence is a sequence of letters and digils representing an integer with the radix
specified by base. optionally preceded by a+ or- sign, but not including an
integer suffix The letters from a (or A) through z (or Z) stand for the values I 0 to 35:
only letters whose ascribed values are Jess than that of the base are permitted. If
the value of base is 16. the characters Ox or OX may optionally precede the
sequence of letters and digits following the sign, if present A pointer to the final
string is stored in the object pointed to by endptr. provided that endptr is not a
null pointer.

Returns the converted value if any. If no conversion could be performed. zero is
returned. If the correct value is outside the range of representable values.
ULONG_MAX is returned, and the value of the* macro ERANGE is stored in errno.

int rand(void)

Computes a sequence of pseudo-random integers in the range 0 to RAND _ MAX,

where RAND MAX = Ox7fffffff.

Returns: a pseudo-random integer.

void srand(unsigned int seed)

Uses its argument as a seed for a new sequence of pseudo-random numbers to be
returned by subsequent calls to rand. If srand is then called with the same seed
value. the sequence of pseudo-random numbers will be repeated If rand is called
before any calls to srand have been made. the same sequence is generated as
when srand is first called with a seed value of I.

123

stdlib.h

calloc

free

malloc

realloc

124

void *calloc(size_t nmemb, size_t size)

Allocates space for an array of nmemb objects. each of whose size is size The
space is initialised to all bits zero

Returns either a null pointer or a pointer to the allocated space.

void free(void * ptr)

Causes the space pointed to by ptr to be deallocated (made available for further
allocati on). If ptr is a null pointer. no action occurs. Otherwise, if ptr does not
match a pointer ea rlier returned by calloc. malloc or realloc or if the space
has been deallocated by a ca ll to free or realloc. the behaviour is undefined.

void *malloc(size_t size)

Allocates space for an object whose size is specified by size and whose value is
i ndeterm 1 nate

Returns either a null pointer or a pointer to the allocated space

void *realloc(void * ptr, size_t size)

Changes the size of the object pointed to by ptr to the Sile specified by size The
contents of the object is unchanged up to the lesser of the new and old sizes. If the
new size is larger. the value of the newly allocated portion of the object is
indeterminate. If ptr is a null pointer. the realloc function behaves like a call to
malloc for the specified size. Otherwise. if ptr does not match a pointer earlier
retu rned by calloc. malloc or realloc. or if the space has been deallocated
by a ca ll to free or realloc. the behaviour is undefined. If the space cannot be
alloca ted. the object pointed to by ptr is unchanged. If c; ize is zero and ptr is not
a null pointer, the object it points to is freed.

Returns either a null pointer or a pointer to the possibly moved allocated space.

abort

atexit

exit

The C library

void abort(void)

Causes abnormal program termination to occur. unless the signal SI GABRT is
bemg caught and the signal handler does not return Whether open output stream~
are flushed or open streams are closed or temporary files removed is
implementation-defined (under RISC OS all these occurj An
Implementation-defined form of the status 'unsuccessful termination' (I under
RISC OS) is returned to the host environment by means of a call to
rai se(SIGABRT)

int atexit (vo id (* func)(void))

Registers the function pointed to by func. to be ca lled wi thout its arguments at
normal program terminat ion . It is possible to register at least 32 functions.

Retu rns: zero if the registration succeeds, non·zero if it fa il s.

void ex i t(int status)

Causes normal program termination to occur. If more than one call to the exit
function is executed by a program (for example, by a function registered with
atexitl. the behaviour is undefined First . all functions registered by the atexit
funct1on are called. in the reverse order of their registration Next. all open output
streams are flushed. all open st reams are closed . and all files created by the
t mpfile function are removed. Finally, control is returned to the host
envi ronment . If the value of status is zero or EXIT_ SUCCESS, an
implementation-defined form of the status 'successful term ination· (0 under
RISC OS) is returned. If the value of status is EXIT FAILURE. an
implementation-defined form o f the status 'unsuccessfu l term inat ion· (I under
I~ ISC OS) is returned. Other.vise the status returned is implementation-defined
(the value of status is returned under RISC OS)

125

stdlib.h

getenv

system

bsearch

126

char *getenv(const char * name)

Searches the environment list. provided by the host environment. for a string that
matches the string pointed to by name The set of environment names and the
method for altering the environment list are implementation-defined

Returns a pointer to a string associated with the matched list member The array
pointed to is not modified by the program. but may be overwritten by a subsequent
call to the getenv function. If the specified name cannot be found. a null pointer
is returned.

int system(const char * string)

Passes the string pointed to by string to the host environment to be execu ted by
a command processor in an implementation-defined manner. A null pointer may
be used for string. to inquire whether a command processor exists. Under
RISC OS. care must be taken. when executing a command. that the command does
not overwrite the calling program. To control this. the string chain: or call :
may immediately precede the actual command The effect of call: is the same as
1f call: were not present. When a command is called. the caller is first moved to
a safe place in application workspace. When the callee terminates. the caller is
restored . This requires enough memory to hold caller and callee simultaneously.
When a command is chained. the caller may be overwritten . If the caller is not
overwritten. the caller exits when the caller terminates. Thus a transfer of control is
effected and memory requirements are minimised

Returns If the argument is a null pointer. the system function returns non-zero
only if a command processor is available. If the argument is not a null pointer, it
returns an implementation-defined value (under RISC OS 0 is returned for success
and -2 for failure to invoke the command; any other value IS the return code from
the executed command).

void *bsearch(const void *key, canst void * base,
size_t nmemb, size_t size, int (* compar)
(canst void*, canst void*))

Sedrches an array of nmemb objects. the initial member of which is pointed to by
base. for a member that matches the object pointed to by key The size of each
member of the array is specified by size The contents of the array must be in
ascending sorted order according to a comparison function pointed to by compar.

•zrr

qsort

abs

div

The C library --- ·-~·········----

which is called with t\VO arguments that point to the key object and to an array
member. in that order. The function returns an integer less than. equal to, or
greater than zero if the key object is considered. respectively, to be less than. to
match, or to be greater than the array member.

Returns a pointer to a matching member of the array, or a null pointer if no match
is found. If two members compare as equal. which member is matched is
unspecified.

void qsort(void * base, size t nmemb, size_ t size,
int (* compar)(const void*, const void*))

Sorts an array of nmemb objects. the initial member of which is pointed to by
base. The size of each object is specified by size. The contents of the array are
sorted in ascending order according to a comparison function pointed Lo by
compar. which is called with two arguments that point to the objects being
compared. The function returns an integer less than, equal to. or greater than zero
if the first argument is considered to be respectively less than. equal Lo, or greater
than the second. If two members compare as equal, their order in the sorted array
is unspecified

int abs(int j)

Computes the absolute value of an integer j If the result cannot be represented.
the behaviour is undefined.

Returns the absolute value.

div_ t div(int numer, int denom)

Computes the quotient and remainder of the division of the numerator numer by
the denominator denom. If the division is inexact. the resulting quotient is the
integer of lesser magnitude that is the nearest to the algebraic quotient. If the
result cannot be represented. the behaviour is undefined; otherwise. quot *
denom + rem equals numer.

Returns: a structure of type di v _ t. comprising both the quotient and the
remainder. The structure contains the following members: int quot: int rem.
You may not rely on their order.

127

stdlib.h

labs

ldiv

mblen

128

long int labs(long int j)

Computes the absolute value of an long integer j If the result cannot be
represented. the behaviour is undefined.

Returns the absolute value.

ldiv_t ldiv(long int numer, long int denom)

Computes the quotient and remainder of the division of the numerator numer by
the denominator denom. If the division is inexact. the sign ot the resulting
quotient is that of the algebraic quotient. and the magnitude o f the resulting
quo tient is the largest integer less than the magnitude of the algebraic quotient If
the result cannot be represented. the behaviour is undefined: otherwise. quot *
denom + rem equals numer

Returns· a structu re of type ldiv_t. comprising both the quotient and the
remainder. The structu re contains the following members long int quot;
long int rem You may not rely on their order

Multibyte character functions

The behaviour of the multibyte character functions is affected by the LC _ CTYPE
category of the current locale. For a state-dependent encoding, each function is
placed into its initial state by a call for which its character pointer argument. s . is a
null pointer. Subsequent calls with s as other than a null pointer cause the internal
state of the function to be altered as necessary A call with s as a null pointer
causes these functions to return a non-zero value if encodings have state
dependency, and a zero otherwise After the LC CTYPE category is changed. the
shift state of these functions is indeterminate.

int mblen(const char * s, size_t n)

If sis not a null pointer. the mblen function determines the number o f bytes
comprisi ng the multibyte cha racter pointed to by 5 except that the shift state of
the mbtowc function is not affected. it is equ ivalent to mbtowc ((wchar_t
*)0, s, n) .

Returns If 5 is a null pointer. the mblen function returns a non-zero or zero value,
1f mullibyte character encodings, respectively do or do not have state-dependent
encodings If s is not a null pointer. the mblen function either returns a 0 tif 5

mbtowc

wctomb

The C library

points to a null character). or returns the number of bytes that comprise the
multi byte character (if the next n of fewer bytes form a valid multibyte character).
or returns -I (if they do not form a valid multibyte character) .

int mbtowc(wchar_t * pwc, canst char * s, size_t n)

If sis not a null pointer, the mbtowc function determines the number of bytes that
comprise the multibyte character pointed to by s . It then determines the code for
value of type wchar_ t that corresponds to that multi byte character. (The value of
the code corresponding to the null character is zero) If the multibyte character is
valid and pwc is not a null pointer. the mbtowc function stores the code in the
object pointed to by pwc. At most n bytes of the array pointed to by swill be
examined.

Returns If sis a null pointer. the mbtowc function returns a non-zero or zero
value. if mu ltibyte character encod i ngs. respectively do or do not have
slate-dependent encodings. lf sis not a null pointer, the mbtowc function either
returns a 0 l if s points to a nu II cha racterl. o r returns the number of bytes that
comprise the converted multibyte character (if the next n of fewer bytes form a
va lid multibyte character). or returns -I (if they do not form a val id multibyte
character)

i nt wctomb(char * s, wchar_t wchar)

Determines the number of bytes need to represent the multibyte cha racter
corresponding to the code whose value is wchar (mcluding any change in shift
stal e) It stores the multibyte character representation in the array object pointed
to by s (if sis not a null pointer). At most MB_ CUR_ MAX characters are stored. If
the vcJ iue of wchar is zero, the wctomb function is left in the initial sh ift state)

l~eturns: H sis a nu ll pointer. the wctomb functi on returns a non-zero or Lero
value, if multibyte character encodings, respectively do or do not have
slate-dependent encod ings. If sis not a null pointer. the wctomb function return s
a - 1 if the va lue of wchar does not correspond to a valid mullibyte character. or
returns the number of bytes that compri se the multi byte cha racter corresponding
to the value o f wchar

129

stdlib.h

mbstowcs

wcstombs

130

Multlbyte string functions

The behaviour of the multibyte string functions is affected by the LC_ CTYPE
category of the current locale.

size_t mbstowcs(wchar_t * pwcs, const char * s, size_t n)

Converts a sequence of multibyte characters that begins in the initial shift state
from the array pointed to by s into a sequence of corresponding codes and stores
not more than n codes into the array pointed to by pwcs . No multi byte character
that follow a null character (which is converted into a code with va lue zero) will be
examined or converted. Each mult i byte character is converted as if by a call to the
mbtowc function . If an inval id multi byte character is found. mbstowcs returns
(size_t) -1. Otherw ise. the mbstowcs function returns the number of array
elements modified. not includ ing a terminating zero code. if any

size_t wcstombs(char * s, const wchar_t * pwcs, size_t n)

Converts a sequence of codes that correspond to multibyte characters from the
array pointed to by pwcs into a sequence of multi byte characters that begins in
the initial shift state and stores these multi byte characters into the array pointed
to by s. stopping if a multibyte character would exceed the limit of n total bytes or
if a null character is stored. Each code is converted as if by a call to the wctomb
function. except that the shift state of the wctomb function is not affected If a
code is encountered which does not correspond to any valid multi byte character.
the wcstombs function returns (size_ t) -1 Otherwise the wcstombs function
returns the number of bytes modified. not including a terminating null character. if
any.

memcpy

memmove

strcpy

The C library

string.h

string . h declares one type and several functions. and defines one macro useful
for manipulating character arrays and other objects treated as character arrays
Vanous methods are used for determining the lengths of the arrays but in all cases
a char * or void * argument points to the initial (lowest addresses) character
of the array. If an array is written beyond the end of an ob1ect the behaviour is
undefined.

void *memcpy(void * sl, canst void * s2, size_t n)

Copies n characters from the object pointed to by s2 into the object pointed to by
sl. If copying takes place between objects that overlap, the behaviour is
undefi ned.

Returns. the value of s l

void *memmove(void * sl, const void* s2, size_t n)

Copies n characters from the object pointed to by s2 into the object pointed to by
sl Copying takes place as if then characters from the object pointed to by s2 are
fust copied into a temporary array of n characters that does not overlap the objects
pointed to by sl and s2. and then then characters from the temporary array are
copied into the object pointed to by sl .

Returns the value of sl .

char *strcpy(char * sl, canst char * s2)

Copies the string pointed to by s2 (including the terminating nul l character) into
the array pointed to by sl. If copying takes place between objects that overlap. the
behdviour is undefined.

l~eturns the value of sl.

131

string.h

strncpy

strcat

strncat

memcmp

132

char *strncpy(char * sl, const char* s2, size_t n)

Copies not more than n characters (characters that follow a null character are not
copied) from the array pointed to by s2 into the array pointed to by sl. If copying
takes place between objects that overlap, the behaviour is undefined If
terminating nul has not been copied in chars. no term nul is placed in s2 .

Returns: the va lue of sl.

char *strcat(char * sl, const char * s2)

Appends a copy of the string pointed to by s2 (including the term inating null
character) to the end of the string pointed to by sl. The initial character of s2
overwrites the null character at the end of sl.

Returns the value of sl.

char *strncat(char * sl, const char * s2, size_t n)

Appends not more than n characters (a null character and characters that follow it
are not appended) from the array pointed to by s2 to the end of the string pointed
to by sl . The in itial character of s2 overwrites the null character al the end of sl .
A term inating null character is always appended to the result

Returns : the va lue of sl.

The sign of a non-zero value returned by the comparison functions is determined
by the sign of the difference between the values of the tirst pair of cha racters (both
interpreted as unsigned char) that differ in the objects being compared.

int memcmp(const void* sl, const void* s2, size_t n)

Compares the first n characters of the object pointed to by sl to the first n
characters of the object pointed to by s2 .

Returns: an integer greater than, equal to. or less than zero, depending on whether
the object pointed to by sl is greater than. equa l to, or less than the object
pointed to by s2 .

strcmp

strncmp

strcoll

strxfrm

The C library

i n t strcrnp(const char* sl, const char * s2)

Compares the string pointed to by s l to the stnng pomted to by s2

Returns an integer greater than. equal to. or less than zero. dependmg on whether
the string pointed to by sl is greater than. equal to. or less than the string pointed
to by s2

int strncrnp(const char * sl, const char * s2, size_ t n)

Cornpdres no t more than n characters (characters that fo llow a null character are
no l compared) from the array pointed to by sl to the mray po inted Lo by s2.

l~cLu rns: dn integer greater than. equal to. o r less than zero. depend ing on whether
Lhe stri n~ pointed to by sl is greater than. equal to. or less than Lhe string po inted
Lo by s2

int strcol l (const char * sl, const char * s2)

Compares the st ring pointed to by sl to the st ring pomted to by s 2. both
interpreted as appropriate to the LC_ COLLATE category of the cu rrent locale.

Returns an integer greater than. equal to or less than zero. depending on whether
the string pointed to by sl is greater than equal to. or less than the string pointed
to by s2 when both are interpreted as appropriate to t he current locale

size_t strxfrrn(char * sl, canst char * s2, size_ t n)

Transforms the string pointed to by s2 and places the resulting string into the
array pointed to by sl . Th e transformation function is such Lhat if the strcrnp
function is applied to two transform ed strings. it returns a value greater than.
equal to or less than zero. corresponding to the result o f the strcoll funct ion
applied to the same two original strings No more than n characters are placed into
the resul ti ng array po inted to by s 1. inc I ud ing t he term inal i ng nu II character. If n is
zero sl 1s perm i tted to be a null po inter If copying takes place between objects
that overlap. the behaviou r is undefi ned

133

string.h

memchr

strchr

strcspn

strpbrk

1:i4

Returns: The length of the transformed string is returned (not including the
termmdling null character) If the value returned is nor more. the contents of the
array pointed to by sl are indeterminate.

void *memchr(const void * s, int c, size_t n)

Locates the first occurrence of c (converted to an unsigned chan in the initia l n
characters (each interpreted as unsigned char) of the object pointed to by s.

Returns: a pointer to the located character. or a null pointer if the character does
not occur in the object.

char *strchr(const char * s, int c)

Locates the first occurrence of c (converted to d chc:~n in the string pointed to by s
(including the terminating null character) The BSD UNIX name for this function is
index()

Returns a pointer to the located character. or a null pointer tf the character does
not occur in the string

size_t strcspn(const char * sl, const char * s2)

Computes the length of the initial segment of the string pointed to by sl which
con~ists entirely of characters not from the string pointed to by s2 The
terminating null character is not considered part of s2

Returns the length of the segment.

char *strpbrk(const char * sl, const char * s2)

Locates the first occurrence in the string pointed to by s 1 of any character from the
string pointed to by s2 .

Returns: returns a pointer to the character. or a null pointer if no character form s2
occurs in sl.

strrchr

strspn

strstr

strtok

The C library

char *strrchr(const char * s, int c)

Locates the last occurrence of c (converted to a char) in the string pointed to by s
The terminating null character is considered part of the string The BSD UNIX name
for th1s function is rindex () .

Returns returns a pointer to the character. or a null pointer if c does not occur in
the string

size_t strspn(const char * sl, const char * s2)

Computes the length of the initial segment of the string pointed to by sl which
consists entirely of characters from the string pointed to by s2

Returns: the length of the segment.

char *strstr(const char * sl, const char * s2)

Locates the first occurrence in the string pointed to by sl of the sequence of
characters (excluding the terminating null character) in the string pointed to by s2

Returns. a pointer to the located string. or a null pointer If the string is not found.

char *strtok(char * sl, const char * s2)

A sequence of calls to the strtok function breaks the string pointed to by sl into
a sequence of tokens. each of which is delimited by a character from the string
pointed to by s2. The first call in the sequence has sl as its first argument. and is
followed by cal ls with a null pointer as their first argument. The separator string
pointed to by s2 may be different from ca ll to ca l l. The first ca ll in the sequence
searches for the first character that is not conta ined in the current separator string
s2. If no such cha racter is found. then there are no tokens in sl and the strtok
function returns a null pointer. If such a character is found. it is the start of the first
token. The strtok function then searches from there for a character that is
contained in the cu rrent separator string. If no such character is found. the current
token extends to the end of the string pointed to by sl. and subsequent searches
for a token will fail. If such a character is found. it is overwritten by a null character.
which terminates the current token. The strtok function saves a pointer to the

135

string.h

memset

strerror

strlen

136

following character. from which the next search for a token will stdrt. Each
subsequent ca ll . with a null pointer as the value for the fi rst <Hgurncnt starts
search ing from the saved pointer and behaves as described above

Returns pointer to the fi rst character of a token. or a null pointer if there is no
token

void *memset(void * s, int c, size_ t n)

Copies the value of c (converted to an unsigned char) into each of the first n
characters of the object pointed to by s .

Return s the value of s .

char *strerror(int errnum)

Maps the error number in errnum to an error message string

Retu rns a poin ter to the string, the contents of wh ich are implementation-defined
Under RISC OS and Arthur the strings for the given errnums are as follows

• 0 No error (errno = 0)

• EDOM EDOM- function argument out of range

• ERANGE ERANGE- function result not representable

• ESIGNUM ESIGNUM - illegal signal number to signal () or
raise ()

• others Error code (errno) has no associated message).

The array pointed to may not be modified by the program. but may be overwritten
by a subsequent ca ll to the strerror function.

size_ t strlen(const char * s)

Computes the length of the string po inted to by s .

Returns: the number of characters that precede the term inating null character.

struct tm

clock

The C library

time.h

time. h declares two macros. four types and several functions for manipulating
time Many functions deal with a calendar time that represents the cu rrent date
(according to the Gregorian calendar) and time Some funct ions deal with local
t1me. which is the calendar t ime expressed for some specific time zone, and with
Daylight Saving Time. which is a tempora ry change in the algorithm for
determining loca l time

struct tm holds Lhc components o f a calendar time ca lled the broken-down
Lime The va lue of t m_ isdst is positive if Daylight Saving Time is in effect, zero if
Dayl ight Saving Time is not in effect. and negative if the information is not
available.

struct tm {
int tm sec ; I* seconds after the minute, 0 to 60

(0-60 allows for the occasional leap
second) *I

int tm min I* minutes after the hour , 0 to 59 *I
i nt tm hour I* hours since midni ght , 0 to 23 *I
i nt t m_mday I* day of the mont h, 0 to 31 *I
i nt t m mon I* months since January, 0 to 11 *I
i n t t m year I* years since 1900 *I
int tm_wday I* days since Sunday , 0 to 6 *I
int tm yday I* days since January 1 , 0 to 365 *I
i nt tm isdst I* Dayl i ght Saving Time flag *I

} ;

clock_ t clock (void)

Dcterrnincs the processor time used.

Ret urns: the implementation's best approximation to the (..l rocessor Lime used by
rhe program since program invocation. The Lime in seconds is Lhc value returned.
divided by the va lue of the macro CLOCKS_PER_SEC The value (clock_t) -1
is returned if the processor t ime used is not avai lable In the desktop, clock()
returns all processor t ime. not just that of t he program.

137

time.h

difftime

mktime

time

asctime

138

..................... ..,.. ... ,...,., $14.... ..

double difftime(time_ t timel, time_t timeO)

Computes the difference between two ca lendar t imes: timel - timeD. Returns:
the difference expressed in seconds as a double.

time_t mktime(struct tm * timeptr)

Converts the broken -down time, expressed as loca l time. in the structure pointed
to by timeptr into a ca lendar lime value with the same encoding as tha t of the
values returned by the time fu nction. The o riginal values of the tm_wday and
tm_yday components of the structu re are ignored, and the original values of the
other components are not restricted to the ranges indicated above. On successfu l
completion. the values of t he tm_wday and tm_yday structure components are
set appropriately. and the other components are set to represent t he specified
calenda r time. but with thei r values forced to the ranges indicated above; the fina l
value of tm_mday is no t set until tm_mon and tm_year are determined.

Returns the speci fied ca lendar time encoded as a value of type time_t . If the
calendar time ca nnot be represented. the function returns the va lue (time_ t) -1.

time_t time(time_ t * timer)

Determines the current ca lendar time. The encod ing o f Lhe value is unspecified

Returns: the implementation's besl approximation to the current calendar lime
The value (time_ t) -1 is ret urned if the calenda r t ime is not avai lable. If timer
is not a null pointer, t he return value is also assigned lo Lhe object it points to.

char *asctime(const struct tm * timeptr)

Converts the broken-down t ime in the structure pointed to by timeptr into a
stringinthestylesun Sep 16 01:03:52 1973\n\0.

Retu rns: a pointer to the string conta ining the date and time.

ctime

gmtime

localtime

strftime

The C library

char *ctime(const time_t * timer)

Converts the calendar time pointed to by timer to local time in the form of a
string It is equivalent to asctime (local time (timer))

Returns: the pointer returned by the asctime funct1on w1th that broken-down
time as argument.

struct tm *gmtime(const time_t * timer)

Converts the ca lendar time pointed to by timer into a broken-clown time,
expressed as Greenwich Mean Time (GMT) .

l~eturns a pointer to that object or Cl null pointer if GMT is not avai lable.

struct tm *localtime(const time_t * timer)

Converts the calenda r time pointed to by timer into a broken-down time.
expressed a local time.

Returns a pomter to that object

size_t strftime(char * s, size t maxsize, const char *
format, const struct tm * timeptr)

Places characters into the array pointed to by s as controlled by the string pointed
to by format . The format string consists of zero o r more directives and ordinary
characters. A directive consists of a % character foll owed by a character that
determines the directive's behaviour. All o rdinary characters (including the
terminating null character) are copied unchanged into the array. No more than
maxsize characters are placed into the array. Each directive is rep laced by
appropriate characters as described in the following lisl. The appropriate
characters are determined by the LC_ TIME ca tegory o f the current loca le and by
the values contained in the structure pointed to by timeptr

139

time.h

140

Directive

%a
%A
%b
%8
%c
%d
%H
%I

%j
%rn
%M
%p

%5
%U

%w
%W

%x
%X
%y
%Y
%Z

Replaced by

the locale's abbreviated weekday name
the locale's full weekday name
the locale's abbreviated month name
the locale's full month name
the locale's appropriate date and time representation
the day of the month as a decimal number 101-31 1
the hour (24-hour clock) as a decimal number 100-231
the hour 1 12-hour clock) as a decimal number (01 121
the day of the year as a decimal number 100 1-366)
the month as a decimal number (01 12)
the minute as a decimal number (00-61)
the locale's equivalent of either AM or PM designation

associated with a 12-hour clock
the second as a decimal number (00 61)
the week number of the year (Sunday ilS the lirst day of

week I) as a decimal number (00-53)
the weekday as a decimal number (0(Sunday) -61
the week number of the year (Monday as the fir~t day of

week I) as a decimal number 100-531
the locale's appropriate date representation
the locale's appropriate time representation
the year without century as a decimal number 100-991
the year with century as a decimal number
the time zone name or abbreviation. or by no character

if no time zone is determmable
%.

It a d1rect1ve is not one of the above. the behaviour JS undefined.

Return::. If the total number of resulting characters including the terminating null
character is not more than maxsize. the strftirne function returns the number
of characters placed into the array pointed to by s not including the terminating
null character. Otherwise. zero is returned and the contents of the array are
i ndeterrn i nate.

8 The ANSI library

T he ANSI library is a stand-alone version of the shared C library that contains a
few extra functions useful in debugging and profilmg your code You should

u~c it for development only, using the shared C library in any final product.

This chapter describes the extra functions provided by the ANSI library For details
of the other functions. see the chapter Tftr C librarlj on page 91 .

141

Extra functions

Extra functions

_heap_checking_on_all_allocates
heap checking_ on_ all_ deallocates

_mapstore
_fmapstore

142

void __ heap_checking_on_all_allocates (int on);
void __ heap_checking_on_all_deallocates (int on);

Ca lling these functions with a non-zero argument causes rnalloc () and free ()
respectively Lo check the consistency of the Cheap on every call. rather than only
when the heap is coalesced. It is especially useful for tracking down exactly where
memory corruption is occurring. This feature is disabled by passing an argument of
zero.

void _rnapstore (void);
void _frnapstore (char *filename);

These functions write profiling information for a program to stderr or f ilenarne
respectively, if the program has been compiled with profiling enabled

9

Introduction

The Event library

The purpose of the 'event' library is to allow the client to more easily d ispatch
Toolbox and Wimp events within Toolbox based applications

A typica l client will register some event handlers, and then enter a poll loop, with
events being dispatched for it to its event handler functions by the event library as
described below.

When Lhc cl ient has ca lled toolbox_initialise. it should ca ll the function
event_ initialise (see page 145). passing a pointer to the id block (see the User
l~rterface Toolbox manual for a description of this) which was passed to
toolbox_initialise; this pointer will then be passed to any even t handler
functions which the client subsequently registers

The client appl ication enters a poll loop using a ca ll to event_poll (see
page 146). passing a pointer to a pol l block. just as for the SWI Wimp_Poll (which
rs. in fact called on the client's behalf). If the client wishes to cause a call to
Wimp_Pol lld le. then it should call event_poll_idle instead (see page 146)
The event block is the one which will be filled in by SWI Wimp_Poll When the
Wimp is polled. the mask passed in RO is determined by the last call made by the
client to the function event_set_mask (see page 145). the default mask used is
to just mask out Null events.

Registering and deregistering event handlers
The event library also allows the client to register functions which wi ll be called
back for particu lar combinations of Toolbox or Wimp events. either on all objects
or on a given object This is done for Toolbox events by ca lling the function
event_register_ toolbox_handler (see page 147), and for Wimp events by
ca lling the function event_register_wimp_handler (see page 147)

These register a handler function which will be cal led back by the event library
following a cal l to event_poll (or event_poll_ idle). if its given conditions
are met The handler function will be passed a client-defined fra~1dle. a pointer to
the poll block passed to event _poll. and a pointer to the client's id block (as
passed to event_initialise).

143

Registering and deregistering message handlers

When event_poll is called and an event has arrived. the event library wil l try to
find a matching handler funct ion in the following priority order

• a handler registered for the object to which this event was delivered

• a handler registered for this event (for all objects I.

All handler functions which are registered for the given event are called using the
order given above. until the list is exhausted or one of the handlers returns
non-zero. indicating that it has 'cla imed' the event If more than one function is
registered at the same priority level as defined above. then they are cal led in the
rcvc-rsc order to that in which they were registered

In order to deregister event handlers, the client ca ll !>
event_deregister_toolbox_handler(see page 148)and
event_deregister_wimp_handler (see page 148) with
the same parameters as when the handler was registered.

Registering and deregistering message handlers

W1mp messages are delivered on a per-task basis, and not to a particular object
(i e the id block is not filled in with an object id) A client can register a handler for
Wimp messages by calling the function event register_message_handler
(see page 148)

If more than one handler is registered for a particular Wimp message. then they are
ca lled 1n the reverse order to that in which they were registered

In order to deregister message handlers the client calls
event_deregister_message_handler (see page 148) with
the same parameters as when the handler was registered.

Quitting applications

Event and message handlers are both held in appli cation space. Application tasks
therefore do not need to remove them on qu itting. nor need they dcrcgister them.

Programmer interface

144

The rest of thi s chapter li sts the C function ca lls that are used to control the event
library. See the chapter Tlie Wimp library on page 153 for a description of the Wimp
type definitions in the Wimp SWI veneer library

event initialise

The Event library

Initialisation

extern _kernel_oserror *event_initialise (IdBlock *b);

The I dB lock that was given to toolbox_ initialise should be passed to
event_initialise; this is then passed to Toolbox and Wimp hdndlers when
they are called.

event set mask

extern kernel oserror *event set mask - - - -
(unsigned int mask);

mask is Cln integer defin ing what events are to be retu rned. This has the same
meaning as the Wimp_Poll mask described on page 3- 11 '5 of the RISC OS 3
Programmer's Reference Manual. By default, this just masks out Null even ts

event_get_ mask

extern _kernel_oserror *event_get_mask
(unsigned int *mask);

mask should be the address of an integer where the current mask is to be stored.

145

Polling

event_poll

event_poll_idle

146

Polling

extern ker nel oserror *event _pol l (int *event _code,
WimpPol lBlock *pol l _b l oc k,
void *poll_word);

This function makes ca ll s to the SWI Wimp_Poll The poll_block shou ld be
allocated before ca lling th is function and its address passed in The poll_word is
opt ional (i e. the pointer may be set to zero). and is on ly used by the Wimp if the
mask is set accordingly (see page 3- 11 5 of the RISC OS 3 Programmer's Referencl?
Manual) by event_set_mask (sec page 145).

extern _ kernel_oserror *event_poll_ idle (int *event_code,
WimpPollBlock *poll_block,
unsigned int earliest,
void *pol l _word);

This function makes calls to the SWI Wimp_Pollldle The poll_ block should be
allocated before calling this function and its address passed in The poll_word is
optional (i.e the pointer may be set to zero). and IS only used by the W1mp if the
mask is set accordingly (see page 3-115 of the RISC OS 3 Programmer's Reference
Manual) by event _set_mask (see page 145}. Like the SWI (page 3-184 of the
RISC OS 3 Programmer's Reference Manual). control will not return to the client before
the earliest time. unless an event other than a Null has occurred

The Event library

Registering handlers

These functions allow registering handlers for Wimp events. Toolbox events and
Wimp messages. If you wish to register fo r all events or all objects a va lue o f -I
should be used in pl ace of the event_ code or Objectid.

If there is not enough memory to register the hand ler. an error will be raised

event_register _wimp_ handler

kernel oserror *event_register_wimp_handler
(Objectid object_ id,
int event_code,
WimpEventHandler *handler,
void *handle);

handler is the function that shou ld be ca lled when the given Wimp event code
occurs on the object (e g. a redraw event on a window! The handle is a value
which wi ll be passed to the handl er function. and thus may be used to associate
a data structure wit h the given object

event_register _toolbox_ handler

_kernel_oserror *event_register_ toolbox_handler
(Objectid object_id,
int event_code,
ToolboxEventHandler *handler,
void *handle);

handler IS the function that should be called when the given Toolbox event code
occurs on the object (e g. a DCS_Discard event on a DCS object) The handle is a
value wh ich will be passed to the handler function. and thus may be used to
associate a data structure with the given object

147

Registering handlers

event_register_message_handler

kernel oserror *event_ reg i ster_message_ handler
{int msg_ no,
WimpMessageHandler * handl er,
void *handle) ;

handl er is the fu nction that should be called when the given Wimp message is
received by the task (e.g. Wimp_MOuit) The handle is a va lue wh ich wi ll be
passed to the handler function. and thus may be used to associate a data
s\ ruct urc with the given message.

To deregister a hand ler, the appropriate function below should be used. Note that
t he parameters must exactly match those passed to the registration function.

An erro r wil l be ra ised if an attempt is made to deregister a hand ler that was not
previously registered.

event_deregister_wimp_handler

kernel oserror *event_deregister_wimp_handler
(Objectid object_ id,
int event_code,
WimpEventHandler *handler,
void *handl e);

Dcregistcrs a previously registered Wimp event handler

event_ deregister _tool box_ handler

kernel oserror * ev ent_deregister_toolbox_ handler
{Objectid object_ id,
i nt event_ code ,
ToolboxEventHandler *handler ,
void *handle) ;

Dercgisters a previously registered Too lbox event hand ler.

event_ deregister _message _handler

148

kernel_oserror *ev ent_deregister_message_handler (int
msg_ no, WimpMessageHandler
*handler, void *handle) ;

Deregisters a previously registered Wimp message handler

The Event library

Handlers

When a cl ient ca lls event_poll. Event Lib issues the SWI Wimp_Poll. 1r the Wimp
returns an event code and poll block that match one of the clients 'interests' then
a handler will be ca lled.

The handlers that are registered and dereg1stered above have the following callmg
parameters ·

• The event code passed in is the actua l event that lead to the handler being
called

• The IdBlock will be that passed to event_ ini tialise. and is upddted by
the Toolbox to identify which object the event has occurred on.

• The handle is the value that was passed through on registrati on . <lncl is not
interpreted by EventLib or the Toolbox

A handler shou ld return zero if it has not handled the event. so that it may be
passed on to other handlers which have been registered for a similar interest
Returning non-zero will claim' the event. and event _poll will return

WimpEventHandler

typedef int (WirnpEventHandler) (int event_code,
WirnpPollBlock *event,
IdBlock *id_block,
void *handle);

ToolboxEventHandler

typedef int (ToolboxEventHandler) (int event_code,
ToolboxEvent *event,
IdBlock *id_block,
void *handle);

WimpMessageHandler

typedef int (WimpMessageHandler) (WimpMessage *message,
void *handle);

149

Example

1 c:;o

Example

The following is a simple example or how Eventlib might be used A more

complete example covering Wimp and Toolbox events can be found in the User

Interface Toolbox manual.

I• • Minimal Toolbox application, using the event veneers library. •I

#include <stdlib . h>
#inc lude "wimp.h"
#include "toolbox.h"
#include "event.h"

#define WimpVersion 310

static WimpPollBlock poll_block;
static MessagesFD messages;
static IdBlock id_block;

static inl quit=O;

int quit_handler (WimpMessage •message, void *handle);

quit =1;
return 1;

int main()

I* claim the event *I

int event code;

I•
• register ourselves with the Toolbox.

•I

toolbox_initialise (0, Wimpversion, 0, 0, "<Test$Dir>",
&messages , &id_block , 0, 0, 0);

I•
* initialise the event library.
•I

event_ initialise (&id_block);

I*
• register handlers
*I

event register message handler (Wimp_MQuit, quil_handler, 0);

!•
• poll loop
•I

while (I quit)

event poll (&event_code, &poll_ block, 0);

exit (EXIT_SUCCESS);

The Event library

151

152

10 The Wimp library

WimpLib provides a set of C veneers onto the Wimp (or Window Manager) SWI
interface For a description of the exact effect of a particular call. you should

see the chapter Tfu' Window Manager at the sta rt of Volume 3 of the RISC OS 3
Programmer's Reference Manual.

The section below lists in alphabetical order the functions provided by WimpLib.
The functions' names are derived directly from the SWis' names: for example, the
veneer to ca ll Wimp_CreateWindow is wimp_create_window. Each function has
page references to the RISC OS 3 Programmer's Reference Manual- including ones,
where relevant. to Volume 5 (the Supplement for version 3 5)

WimpLib does not provide access to every Wimp SWI: for example. the Filter
related SWis and Wimp_SetWatchDogState are omitted. Such SWis still have an
entry below under their expected function name. just so you can rapidly determine
they are not supported. Although functions are provided for adding and removing
Wimp messages. you must not use these in Toolbox applications

Note that when a value is returned as a parameter (e.g. an integer value is returned
by function (int input, int *output)). the pointer to the return value
may be set to zero rather than provide a dummy variable.

153

Programmer interface

Programmer interface

wimp _add _messages

kernel_oserror •wimp_add_messages (int *list I• RO in • I);

Th is calls the SWI Wimp_AddMessages (see page 3-226 of the RISC OS 3
Programmer's Reference Manual) You must not use this call in Toolbox applications.

wimp_ base_ of_ sprites

_kernel_oserror •wimp_base_of_sprites (void **rom,
void ••ram

I• RO out *I
I* Rl out *I);

This calls the SWI Wimp_BaseOfSprites (see page 3-203 of the RISC OS 3
Programmer's Reference Manual).

wimp_block_copy

kernel oserror *wimp_block_copy (int handle,
int sxmin,
int symin,
int sxmax,
int symax,
int dxmin,
int dymin

I• RO
I• Rl
I* R2
I* R3
I* R4
I* R5
I* R6

in *I
in *I
in *I
in *I
in *I
in *I
in • I l;

This calls the SWI Wimp_BiockCopy (see page 3-204 of the RISC OS 3 Programmer's
Reference Manual).

wimp_claim_free_memory

You might expect a function of this name to be provided to call
Wimp_CiaimFreeMemory. However. such a function is not implemented by
WimpLib.

wimp_ close_ down

154

_kernel_oserror •wimp_close_down (int th I* RO in *I);

This sets up R I to be &48534154 ('TASK'), and then calls the SWI
Wimp_CioseDown (see page 3-175 of the RISC OS 3 Programmer's Reference Manual)

The Wimp library

wimp_ close_ template

_kernel. oserror •wimp_close_template (void);

This calls the SWI Wimp_CioseTemplate (see page 3-169 of the RISC OS 3
Programmer's Reference Manual)

wimp_ close_ window

_ kernel_oserror •wimp_close_window (int window handle I• Rl in • /);

This calls the SWI Wimp_CioseWindow (see page 3-114 of the RISC OS 3
Programmer's Reference Manual).

wimp_command_window
_kernel oserror •wimp_command_window (int type I• RO in •I);

This calls the SWI Wimp_CommandWindow (see page 3-212 of the RISC OS 3
Programmer's Reference Manual).

wimp_create_icon

_kernel oserror •wimp_create_icon (int priority, I• RO in •I
WimpCreateiconBlock •defn, I* Rl in *I
int *handle I• RO out *I);

This ca l ls the SWI Wimp_Createlcon (see pages 3-96 and 5-204 of the RISC OS 3
Programmer's Reference Manual)

wimp_create_menu, CloseMenu

#define CloseMenu ((void*) -1)

_kernel oserror •wimp_create_menu (void * handle,
int x,
int y

I• Rl in •I
I• R2 in •I
I• R3 in •I);

This cal ls the SWI Wimp_CreateMenu (see pages 3- 156 and 5-205 of the RISC OS 3
Programmer's Reference Manual) .

wimp_ create_ submenu
_kernel_oserror •wimp_create_ submenu (void * handle,

int x,
int y

I* Rl in •!
I• R2 in */
I• R3 in*/);

This calls the SWI Wimp_CreateSubmenu (see page 3-199 of the RISC OS 3
Programmer's Reference Manual).

155

Programmer interface

wimp_create_window

_kernel_oserror •wimp_create_window (WimpWindow •defn,
int •handle

I* Rl in •/
I• RO out •/);

This cal ls the SWI Wimp_CreateWindow (see pages 3-89 and 5-204 of t he
RISC OS 3 Programmer's Reference Manual).

wimp_decode_menu

kernel_oserror •wimp_decode_menu (void *data,
int •selections,
char *buffer

I* Rl in */
!• R2 in •I
I* R3 in*/);

This ca lls the SWI Wimp_DecodeMenu (see page 3-161 of the RISC OS 3
Programmer's Reference Manual)

wimp_delete_icon
_ kernel_oserror •wimp_delete_icon (WimpDeletelconBlock *block

I* Rl in *I);

This ca lls the SWI Wimp_Deletelcon (see page 3-110 of the RISC OS 3 Programmer's
Reference Manual)

wimp_ delete_ window
_ kernel_oserror *wimp_delete_window (WimpDeleteWindowBlock *block

I* Rl in */);

This calls the SWI Wimp_DeleteWindow (see page 3- 108 of the RISC OS 3
Programmer's Reference Manual)

wimp_drag_box, CanceiDrag

wimp_extend

156

#define CancelDrag 0

_kernel_oserror •wimp_drag_box (WimpDragBox •block
!• Rl in *I);

This cal ls the SWI Wimp_DragBox (see page 3- 145 o f the RISC OS 3 Programmer's
Reference Manual).

You might expect a function of this name to be provided to cal l Wimp_Extend.
However. such a function is not implemented by WimpLib.

The Wimp library

wimp_force_redraw
_kernel_oserror •wimp_force_redraw (int window_handle, I• RO

int xmin, I• Rl
int ymin, I• R2
int xmax, I• R3
int ymax I• R4

This calls the SWI Wimp_ForceRedraw (see page 3-150 of the RISC OS 3
Programmer's Reference Manual) .

wimp _get_ caret_position

in
in
in
in
in

_kernel_oserror •wimp_get_caret_position(WimpGetCaretPositionBlock •block

*I
•I
•I
•I
*I);

I• Rl in *I);

This calls the SWI Wimp_GetCaretPosition (see page 3-154 of the RISC OS 3
Programmer's Reference Manual).

wimp _get_icon _state
_kernel_oserror •wimp_get_icon_state (WimpGeticonStateBlock •block

I• Rl in *I);

This calls the SWI Wimp_GetlconState (see page 3-141 of the RISC OS 3
ProgrammPr's Reference Manual).

wimp _get_ menu_ state
_kernel_oserror •wimp_get_menu_state (int report,

int •state,
int window,
int icon

I* RO in *I
I* Rl in • I
I• R2 in •I
I• R3 in •I);

This calls the SWI Wimp_GetMenuState (see page 3-222 of the RISC OS 3
Programmer's Reference Manual).

wimp _get_pointer _info
_kernel_oserror •wimp_get_pointer info (WimpGetPointerinfoBlock •block

I• Rl in •I);

This calls the SWI Wimp_GetPointerlnfo (see page 3-143 of the RISC OS 3
Programmer's Reference Ma~1Ua/) .

157

Programmer interlace

wimp _get_ rectangle
_kernel_oserror •wimp_get_ rectangle (WimpRedrawWindowBlock •block,

I* Rl in *I
int •more I* RO out *I);

This ca lls the SWI Wimp_GetRectangle (see page 3- 133 of the RISC OS 3
Programmer's Reference Manual)

wimp _get_ window _info
_kernel_oserror •wimp_get_window_ info (WimpGetWindowinfoBlock *block

I* Rl in *I);

This calls the SWI Wimp_GetWindowlnfo (see page 3-137 of the RISC OS 3
Programmer's Reference Manual).

wimp _get_ window_ outline
kernel_oserror •wimp_get_window_outline(WimpGetWindowOutlineBlock *block

I* Rl in •I);

This ca lls the SWI Wimp_GetWindowOutline (see page 3-182 of the RISC OS 3
Programmer's Reference Manual)

wimp _get_ window_ state

wimp _initialise

158

_kernel_oserror *wimp_get_window_state (WimpGetWindowStateBlock •state
I• Rl in *I);

This calls the SW! Wimp_GetWindowState (see page 3-135 of the RISC OS 3
Programmer's Reference Manual).

_kernel_oserror •wimp_initialise (int version,
char *name,
int •messages,
int •eversion,
int • task

I*
I*
I*
I•
I•

RO in
R2 in
R3 in
RO out
Rl out

•I
•I
*I
•I
•I);

This sets up Rl to be &4B534 154 ('TASK'). and then ca lls the SWI Wimp_lnitialise
(see page 3-87 of the RISC OS 3 Programmer's Reference Manual) .

The Wimp library

wimp _load_ template

_kernel oserror •wimp_load_template (kernel_swi_regs *regs /*Rl-6 in*/);

This ca lls the SWI Wimp_LoadTemplate (see page 3-170 of the RISC OS 3
Programmer's l~e{erence Manual)

wimp_open_template

kernel oserror •wimp_open_template (char •name !• Rl in •I);

Thb calb the SWI Wimp_OpenTemplatc (see page 3-168 of the RISC OS 3
Programma's Rc'/uence Manuall

wimp_ open_ window

_kernel_oserror •wimp open_window (WimpOpenWindowBlock •show
I* Rl in */);

This calls the SWI Wimp_OpenWindow (see page 3-112 of the RISC OS '3
Programma's Reference Manual).

wimp_plot_icon

wimp_poll

_kernel_oserror •wimp_plot_ icon (WimpPlotlconBlock *block
I* Rl in*/);

Th is ca lls the SWI Wimp_Piotlcon (see page '3- 186 of the RISC OS 3 Programmer's
Reference Manual) .

_kernel oserror •wimp_poll (int mask,
WimpPollBlock *block,
int *pollword,
int •event_code

!• RO in */

I* Rl in */

I• R2 in •!
!• RO out */);

This ca ll s the SWI Wimp_Poll(see page 3- 115 of the RISC OS 3 Programmer's
Referencl' Manual) .

159

Programmer interface

wimp_poll_idle

_ kernel_oserror *wimp_pollidle (int mask, I* RO in *I
NimpPollBlock *block, I* Rl in *I
int time, I• R2 in *I
int *pollword, I* R3 in •I
int •event_code I* RO out *I);

This ca lls the SWI Wimp_Pollldle (see page 3-184 of the RISC OS 3 Programmer's
Reference Manual).

wimp _process_ key

_ kernel_oserror *\~imp_process_key (int keycode I• RO in *I) ;

This ca lls the SWl Wimp_ProcessKey (see page 3-173 of the RISC OS 3 Programmer's
Re!ere11ce Ma11ual)

wimp_read_palette

_kernel_oserror *wimp_read_palette (Palette *palette I* Rl in *I);

This ca lls the SWl Wimp_ReadPalette (see page 3-192 of the RISC OS 3
Programmer's Reference Manual)

wimp_read_pix_trans

You might expect a function of this name to be provided to ca ll
Wimp_ReadPixTrans. However, such a function is not implemented by WimpLib.

wimp_read_sys_info, WimpSyslnfo

typedef s t ruct { int rO; int rl ; } WimpSysinfo;

_kernel_oserror *wimp_read_sys_info (i nt reason,
WimpSysinfo •results

I* RO in *I
I* RO out *I);

This calls the SWI Wimp_ReadSyslnfo (see pages 3-218 and 5-206 of the RISC OS 3
Programmer's Reference Manual)

wimp _redraw_ window

160

kernel oserror •wimp_redraw window (WimpRedrawiHndowBlock *block,
I* Rl in •I

int *more I• RO out *I);

This calls the SWI Wimp_RedrawWindow (see page 3- 129 of the RISC OS 3
Programmer's Reference Manual).

The Wimp library

wimp _register _filter

You might expect a function of this name to be provided to call
Wimp_RegisterPil ter. However, such a function is not implemented by WimpLib

wimp _remove_ messages
_kernel oserror •wimp_remove_messages (int •list !• RO in*/);

This calls the SWI Wimp_RemoveMessages (see page 3-227 of the RISC OS 3
Programmer's Reference Manual). You must not use this call in Toolbox applications.

wimp _report_ error
i nt wimp _ report_ error kernel_oserror (_ *er , I* RO in •I

int flags , !• Rl in •I
char •name, !• R2 in • I
c har •sprite, !• R3 in * I
void *area, !• R4 in •I
char •buttons I• R5 in * /) ;

This calls the SWI Wimp_ReportError (see pages 3-179 and 5-205 of the RISC OS 3
Programmer's Reference Manual) .

wimp_resize_icon
_kernel_oserror •wimp_resize_ i con (int window,

int icon,
i nt xmin,
int ymin,
int xmax,
int ymax

!•
!•
!•
!•
!•
I•

RO in •!
Rl in •!
R2 in •I
R) in • !
R4 in •!
R5 in •I);

This calls the SWI Wimp_Resizelcon (see page 5-217 of the RISC OS 3 Proqrammer's
Reference Manual)

wimp_send_message
_kernel_oserror •wimp_ send_message (int code,

void *block,
int handle,
int icon,
int •th

!• RO
!• Rl
!• R2
I• R)
I• R2

This calls the SWI Wimp_SendMessage (see page 3-196 of the RISC OS 3
Programmer's Reference Manual).

in •!
in •I
in •I
in • I
out *I);

161

Programmer interface

II" ZWJIIIIII!IIIIilllllllliiiii!IIJ

wimp_ set_ caret_position
_kernel oserror •wimp_set_caret_position(int window_handle, I* RO in

int icon_handle, I* Rl in
int xoffset, I• R2 in
int yoffset, I* R3 in
int height, I* R4 in
int index I• RS in

This ca lls the SWI Wimp_SetCaretPosition (see page 3-152 of the RISC OS 3
Programmer's Reference Manual)

*I
•I
•I
*I
•I
*I);

wimp_ set_ colour, Wimp_ BackgroundColour
#define Wimp_BackgroundColour (128)

_kernel_oserror *'~imp_set_colour (int colour I• RO in *I);

This calls the SWI Wimp_SetColour (see page 3- 194 of the RISC OS 3 Programmer's
Reference Manual).

wimp_ set_ colour_ mapping
kernel_oserror •wimp_set_colour_mapping(int which_palette,

int *bppl,
int *bpp2,
int *bpp4

I• Rl in •I
I• R2 in •I
I• R3 in •I
I• R4 in •I);

This calls sets R5. R6 and R7 to zero and then calls the SWI
Wimp_SetColourMapping (see page 3-228 of the RISC OS 3 Programmer's Reference
Manual)

wimp_ set_ extent
_kernel_oserror *\~imp_set_extent (int window_handle,

BBox •area
I* RO in •I
I* Rl in *I);

This ca lls the SWI Wimp_SetExtent (see page 3-164 of the R!SC OS 3 Programmer's
Reference Manual)

wimp_set_font_colours

162

_ kernel_oserror •wimp_set_ font_colours (int fore
int back

I• Rl in •I
I• R2 in *I);

This ca lls the SWI Wimp_SetFontColours (see page 3-220 of the RISC OS 3
Programmer's Reference Manual)

The Wimp library

= =

wimp_set_icon_state

_kernel_oserror •wimp_set_icon_state (WimpSeticonStateBlock *block)
I• Rl in •I;

This calls the SWI Wimp_SetlconState (see page 3-139 of the RISC OS 3
Programmer's Reference Manual) .

wimp_set_mode

_ kernel_oserror •wimp_set_mode (int mode I• RO in *I);

This calls the SWJ Wimp_SetMode [see page 3- 188 of the RISC OS 3 Programmer's
Reference Manual) .

wimp_ set_palette, Palette

typedef struct { unsigned int colours(l6];
unsigned int border;
unsigned int pointerl;
unsigned int pointer2;
unsigned int pointer3; } Palette;

_kernel_oserror •wimp_set_palette (Palette *palette I* Rl in *I);

Th is ca l ls the SWI Wimp_SetPa lette (see page 3-190 of the RISC OS 3 Programmer's
Rl'ference Manual)

wimp_ set_pointer _shape

kernel_oserror •wimp_set_pointer_shape (int shape,
void *data,
int width,
int height,
int activex,
int activey

I•
I*
I•
I•
I*
I•

RO in
Rl in
R2 in
R3 in
R4 in
RS in

Thi s ca l ls the SWI Wimp_SetPointerShape (see page 3-166 of the RISC OS 3
Programmer's Reference Manual) .

wimp_ set_ watchdog_ state

You might expect a function of th is name to be provided to call
Wimp_SetWatchdogState. However. such a function is not implemented by
WimpLib.

*I
*I
*I
*I
*I
*I);

163

Programmer interface

wimp_slot_size
kernel_oserror •wimp_slot_size (int current,

int next,
int *current,
i nt •next,
int •free

I* RO
I* Rl
I* RO
I• Rl
I• R2

in •I
in *I
out *I
out *I
out *I);

This ca lls the SWI Wimp_SiotSize (see page 3-206 of the RISC OS 3 Programmer's
Reference Manual) .

wimp_sprite_op, SpriteParams
typedef struct {int r3; int r4; int r5 ; int r6; int r7 ; } SpriteParams;

_kernel_oserror *\vimp_spri te_op (int code,
char *name 1

SpriteParams *p

I* RO in *I
I* R2 in *I
I* R3... in *I) ;

This calls the SWI Wimp_SpriteOp (see page 3-20 I of the RISC OS 3 Programmer's
Reference Manual)

wimp_start_task
_ kernel_oserror *\vimp_start_ task (char •cl ,

int •handle
I* RO in *I
I• RO out *I);

Th is calls the SWI Wimp_StartTask (see page 3- 177 of the RISC OS 3 Programmer's
Reference? Manual) .

wimp_text_colour

wimp_text_op

164

_kernel_oserror •wimp_text_colour (int colour I• RO in *I);

Th is calls the SWI Wimp_TextColour (see page 3-214 of the RISC OS 3 Programmer's
Reference Manual) .

kernel oserror *'"imp_ text_ op (_ kernel_ swi_ regs •regs I • RO ... in • I);

This cal ls the SWI Wimp_TextOp (see page 5-210 of t he RISC OS 3 Programmer's
RC?{erence Manual).

The Wimp library

-
wimp_ transfer_ block

_ kernel oserror •wimp_transfer_block (int sh, I• RO
void *sbuf, I* Rl
int dh, I* R2
void •dbuf, I* R3
int size I* R4

This calls the SWI Wimp_TransferBiock (see page 3-216 of the RISC OS 3
Programmer's Reference Manual) .

wimp_update_window

_ kernel_oserror •wimp_update_window (l'lirnpRedrawWindowBlock *block,

in •I
in *I
in *I
in *I
in *I);

I* Rl in •I
int •more I• RO out*/);

This ca lls the SWI Wimp_UpdateWindow (see page 3- l 3 l of the RISC OS 3
Programmer's Reference Manual).

wimp_which_icon

_kernel_oserror •wimp_which_ icon (int window_handle, I* RO
int *icons, I* Rl
unsigned int mask, I• R2
unsigned int match !• R3

i n *I
i n *I
i n •I
in *I);

This ca lls the SWI Wimp_ Which icon (see page 3- 162 of the RISC OS 3 Programmer's
Reference Manual).

165

---------- -----

166

11
-

The Toolbox library

T he Toolbox I ibrary provides a set of C veneers onto the Toolbox SWis. It is
described in the User Interface Toolbox manual, supplied as a part of this product.

For full details of a particu lar veneer, you should see the documentation of the
corresponding SWI ca l l.

167

168

12 The Render library

T he Render library provides a set of C veneers onto the DrawFile SWls. used to
render Draw files It is described in the chapter DrawFile on page 493 of the User

Interface Toolbox manual. supplied as a part of th1s product. For full details of a
particular veneer. you should see the documentation of the correspondmg SWI
call.

169

170

Part 3 - C++ language issues

171

172

13 C++ implementation details

T his chapter describes implementation specific behaviour of the C++ Language
System. Implementation specific behaviours can be categorised as follows:

Behaviour that the Reference Manual defines as 'implementation dependent'

2 Behaviour that depends on the underlying C compiler or preprocessor used
with Release 3.0

3 Properties that are defined in the standard header files stddef. h.
limits . h, and stdlib . h

4 Translation limits

5 Language constructs that are not implemented in this release.

This chapter addresses categories I. 2. 4, and 5. For details about properties
defined in the standard header files (category 3). see the headers themselves.
Additional information about constructs that are not implemented is provided in
the appendix C++ errors and warnings on page 339. which contains an alphabetical
listing of the ·not implemented' error messages.

The ordering and numbering of sections in this chapter corresponds to the order
and numbering of the related sections in the Reference Manual. The section
Translation Limits below (which does not have a corresponding section in the
Reference Manual) precedes the numbered sections.

Translation Limits

Release 3.0 of the Acorn C++ Language System imposes the following translation
limits:

• 50 nesting levels of compound statements

• 10 nesting levels of linkage declarations

• 4088 characters in a token

• 22222 virtual functions in a class

• I 0000 identifiers generated by the implementation

Additional translation limits may be inherited from the underlying C compiler and
preprocessor.

173

Identifiers (2.3)

Identifiers (2.3)

Identifiers reserved by Release 3.0

Release 3.0 reserves identifiers that contain a sequence of two underscores for its
own use. In add ition. identifiers reserved in the ANSI C standard are also reserved
by Release 3.0. Under the +w option, identifiers with double underscores resu lt in
a warning in Release 3.0.

Character Constants (2.5.2)

Value of multicharacter constants

The Reference Manual states that the va lue of a multicharacter constant. such as
'abed'. is implementation dependent. Release 3.0 passes these constants to the
underlying C compiler. which determines their values. A multicharacter constant
containing more characters than si zeof (int) is reported as an error by
Release 3.0.

Value of (single) character constants

The Reference Manual states that the value of a character constant is implementation
dependent if it exceeds that of the largest char. Release 3.0 accepts octa l and
hexadecimal character literals that do not fit in a char. It uses the low order bits
that make up the value of the constant. For example. the octal cha racter constant
' \ 7 7 7 ' is treated as ' \ 3 77 ' . The hexadeci ma I character constant ' \ x 12 3 ' is
treated as '\x23 ' .

Wide character constants

Release 3.0 does not implement wide character constants. such as L' ab' . A ·not
implemented' error message is reported.

Floating Constants (2.5.3)

174

Long double floating constants

When compi ling with the +aO option. Release 3.0 removes an 1 or L suffix from a
float ing constant before passing the constant to the underlying C compiler. Under
the +al option such a constant is passed unchanged to the underlying C compi ler
In either case. the constant is considered to be of type long double for purposes
of resolving overloaded function cal ls.

C++ implementation details

String Literals (2.5.4)

Distinct string literals

The Reference Manual states that it is implementation dependent whether all stri ng
literals are distinct. Release 3.0 does not attempt to detect cases where string
literals could be represented as overlapping objects. The underlying C compiler
may, however. detect such cases and attempt to overlap their storage.

Wide character strings

Release 3.0 does not implement wide character strings, such as L" abed" . A 'not
implemented' error message is reported.

Start and Termination (3.4)

Type of mainO

The Reference Manual states that the type of main () is implementation dependent
Release 3.0 itself does not impose any restrictions on the type of main () . but the
underlying C compiler or the target environment may impose such restrictions.

Linkage of mainO

The Acorn C++ Language System treats main () as if its linkage were
extern "C".

Fundamental Types (3.6.1)

Signed integral types

Release 3.0 does not implement the type specifier signed: it issues a warning and
proceeds as though the specifier signed had not appeared

Long double type

When Release 3.0 is invoked with the +aO option. the type long double is
considered to be the same size and precision as the type double in the underlying
C compiler. Under the +al option. long double is passed to the underlying C
compiler as long double. In either case. type long double is considered a
distinct type for purposes of resolving overloaded function declarations and
invocations.

175

Integral Conversions {4.2)

Alignment requirements

l~elease 3 0 does not impose any alignment restrictions when allocating objects of
a particular type. Such restrictions. if they exist. are enforced by the underlying C
compiler

Integral Conversions (4.2)

Conversion to a signed type

When a va lue of an integral type is converted to a signed integral type with fewer
bits in the representation. Release 3.0 issues a warning message if the +w option is
specified The runtime behaviour o f such a conversion depends on the treatment of
the conversion by the underlying C compiler.

Expressions (5)

Overflow and divide check

The Re{em1ce Manual states that the handling of overnow and divide check in
expression evaluation is implementation dependent. When the second operand of
a division or modulus operator is known to be zero at compile time. Release 3.0
reports an error. Overnow and other divide check conditions are handled by the
underlying C compiler and execution environment

Function Call (5.2.2)

176

Evaluation order

The Refemrce Manual states that the order of evaluation of arguments to a function
call is implementation dependent: similarly, the order of eva luation of the postfix
expression. which designates the function to be ca lled. and the argument
expression list are implementation dependent. In both cases the order depends on
the treatment by the underlying C compiler.

C++ implementation details

Explicit Type Conversion (5.4)

Explicit conversions between pointer and integral types

The Reference Manual states that the value obtained by explicitly converting a
pointer to an integra l type large enough to hold it is implementation dependent.
This behaviour is defined by the underlying C compi ler Simi larly, the behaviour
when explicitly converting an integer to a pointer depends on the underlying C
compiler

Multiplicative Operators (5.6)

Sign of the remainder

The Reference Manual states that the sign of the result of the modulus operator is
non-negative if both operands are non-negative; otherwise. the sign of the resu It is
implementation dependent. This behaviour depends on the underlying C compiler
except when the values of both operands are known at compile time. In this case.
the sign of the result is the same as the sign of the numerator.

Shift Operators (5.8)

Result of right shift

The Reference Manual states that the result of a right shift when the left operand is a
signed type with a negative va lue is implementation dependent This behaviour
depends on the underlying C compiler.

Relational Operators (5.9)

Pointer comparisons

According to the Reference Manual. certain pointer comparisons are implementation
dependent For Release 3 0. the results of these comparisons depend on the
underlying C compiler.

177

Storage Class Specifiers (7. 1. 1)

Storage Class Specifiers (7 .1.1)

In line functions

The Reference Manual states that the in line specifier is a hint to the compiler.

When compiling with the +d option. Release 3.0 always generates out-of-line calls
to inline functions.

Type Specifiers (7 .1.6)

Volatile

Release 3.0 does not implement the type specifier volatile. If it is applied to a
member function, a 'not implemented' error message is issued: otherwise it is
ignored and a warning message is issued.

Signed

Release 3.0 does not implement the type specifier signed, it is ignored and a
warning message is issued.

Asm Declarations (7.3)

Effect of an asm declaration

Release 3.0 passes asrn declarations to the underlying C compiler without
modification. However, the compiler supplied with Acorn C/C++ will fault them.

Linkage Specifications (7.4)

178

Languages supported

Release 3.0 supports linkage to C and C++.

Linkage to functions

The effect of a "C" linkage specification (extern "C") on a function that is not a
member function is that the function name is not encoded with type information.
as is otherwise done for C++ functions. Member functions are not affected by
I in kage specifications.

C++ implementation details

Linkage to non-functions

The C linkage specification (extern "c"), when appl ied to a non-function
declaration, does not affect the C code generated.

Class Members (9.2)

Allocation of non-static data members

Bitfields (9.6)

The Reference Manual states that the order of allocation of non-static data members
across access-specifiers is implementation dependent. Release 3.0 allocates
non-static data members in declaration order.

Allocation and alignment of bitfields

The Reference Manual states that the allocation and alignment of bitfields within a
class object is implementation dependent. Responsibility for the allocation and
alignment of bitfields rests with the underlying C compiler.

Sign of 'plain' bitfields

Whether the high-order bit position of a 'plain' int bitfield is treated as a sign bit
depends on the behaviour of the underlying C compiler

Multiple Base Classes (1 0.1)

Allocation of base classes

The Reference Manual states that the order in which storage is al located for base
classes is implementation dependent. For non-virtual base classes, Release 3.0
allocates storage in the order that they are mentioned in the derived class
declaration.

179

Argument Matching {13.2)

Argument Matching (13.2)

Integral arguments
The type of the result of an integral promotion (4 I) depends on the execution
environment. as does the type of an unsuffixed integer constant (2 5 I)
Consequently, the determination of which overloaded function to call may also
depend on the execution environment. as illustrated by an example in 13.2 of the
Reference Manual.

Exception Handling (experimental) (15)

Release 3.0 does not implement exception handling. The keyword catch is
reserved for future use. A 'not implemented' error message is reported if catch is
seen.

Predefined Names (16.1 0)

180

Predefined macros

The following macros are defined by Release 3.0·

__ cplusplus

c_plusplus

The decimal constant I .

The decimal constant I This macro is provided for
compatibility with previous releases and will not be
supported in the next major release

Other macros may be predefined by the underlying preprocessor

14 The Streams library

T he Streams library is a part of the C++ library, ported from that supplied with
AT&T's CFront product. The on ly sign ificant change made in porting the l ibrary

is the handl ing of file modes. because of the differences between filing systems in
RISC OS and UNIX.

181

Introduction

Synopsis

Description

182

iostream- buffering. formatting and input/output

#include <iostream.h>
class streambuf
class ios ;
class istream : virtual public ios ;
class ostream : virtual public ios ;
class iostream : public istream, public ostream
class istream_withassign : public istream ;
class ostream_withassign : public ostream ;
class iostream_withassign : public iostream

class Iostream_ in it ;

extern istream_withassign cin ;

extern ostream_withassign cout
extern ostream_withassign cerr
extern ostream_withassign clog

#include <fstream.h>
class filebuf : public streambuf
class fstream : public iostream
class ifstream : public istream
class ofstream : public ostream

#include <strstream.h>
class strstreambuf : public streambuf
class istrstream : public istream
class ostrstream : public ostream

#include <stdiostream.h>
class stdiobuf : public streambuf
class stdiostream : public ios ;

Introduction

The C++ iostream package declared in iostrearn . h and other header files
consists primarily of a collection of classes. Although originally intended on ly to
support input/output. the package now supports related activities such as incore
formatting.

In lhe iostream sections. cftaracter refers to a value that can be held in either a char
or unsigned char. When functions that return an int are said to return a
character. they return a positive value. Usually such functions can also return EOF

The Streams library

(-I las an error indication. The piece of memory that can hold a character is
referred to as a byte. Thus, either a char* or an unsigned char* can point to an
array of bytes.

The iostream package consists of severa l core classes, which provide the basic
functionality for 1/0 conversion and buffering, and several specialised classes
derived from the core classes. Both groups of classes are listed below.

Core Classes

The core of the iostream package comprises the following classes:

streambuf

This is the base class for buffers. It supports insertion (also known as storing or
pul.ting) and extraction (also known as fetching or getting) of characters. Most
members are inlined for efficiency The public interface of class streambuf is
described in streambuf- public on page 232. and the protected interface (for derived
classes) is described in streambuf- protected on page 224.

ios

This class contains state variables that are common to the various stream classes.
for example, error states and formatting states. See ios on page 195.

istream

This class supports formatted and unformatted conversion from sequences of
characters fetched from streambufs. See istream on page 206.

ostream

Th is class supports formatted and unformatted conversion to sequences of
characters stored into streambufs. See ostream on page 2 I 7.

iostream

This class combines istream and ostream. It is intended for situations in which
bidirectional operations (inserting into and extracting from a single sequence of
characters) are desired. See ios on page 195.

183

Introduction

184

istream_withassign
ostream_withassign
iostream_withassign

These classes add assignment operators and a constructor with no operands to the
corresponding class without assignment. The predefined streams (see below)
cin, cout, cerr. and clog. are objects of these classes. See istream on page 206.
ostream on page 217, and ios on page 195.

Iostream init

This class is present for technical reasons relating to initialisation. It has no public
members. The Iostream_ini t constructor initialises the predefined streams
(listed below) Because an object of this class is declared in the iostream. h
header file, the constructor is called once each time the header is included
(a lthough the real initialisation is only done once), and therefore the predefined
streams wi ll be initialised before they are used. In some cases. global constructors
may need to ca ll the Iostream_init constructor explicitly to ensure the
standard streams are initialised before they are used.

Predefined streams

The following streams are predefined:

cin

The standard input (file descriptor 0).

cout

The standard output (file descriptor I) .

cerr

Standard error (file descriptor 2). Output through this stream is unit-buffered.
which means that characters are flushed after each inserter operation (See osfx()
on page 219 in ostream, and unilbuf on page 200 in ios.)

clog

This stream is also d irected to file descriptor 2, but unlike cerr its output is
buffered

The Streams library

Note: cin, cerr. and clog are tied to cout so that any use of these will cause
cout to be flushed.

In addition to the core classes enumerated above. the iostream package contains
add itiona l classes derived from them and declared in other headers. Programmers
may use these. or may choose to define their own classes derived from the core
iostream classes.

Classes derived from streambuf

Classes derived from streambuf define the details of how characters are
produced or consumed. Derivation of a class from streambuf (the protected
i11ter{ace) is discussed in streambr.rf - protected on page 224. The available buffer classes
are:

filebuf

This buffer class supports 1/0 through file descriptors Members support opening,
closing. and seeking. Common uses do not require the program to manipu late file
descriptors. See filebuf on page 187.

stdiobuf

This buffer class supports 110 through stdio FILE structs. It is intended for use
when mixing C and C++ code. New code should prefer to use filebufs. See
stdiobuf on page 223.

strstreambuf

This buffer class stores and fetches characters from arrays of bytes in memory (i.e.
strings). See strstreambuf on page 240.

Classes derived from istream, ostream, and iostream

Classes derived from istream, ostream, and iostream specialise the core
classes for use with particular kinds of streambufs. These classes are

if stream
of stream
£stream

These classes support formatted 1/0 to and from files. They use a f ilebuf to do
the 110. Common operations (such as opening and closing) can be done directly on
streams without explicit mention off ilebufs. See {stream on page 191 .

185

Introduction

See also

186

istrstream
ostrstream

These classes support 'in core' formatting They use a strstreambuf. See
strstream on page 237.

stdiostream

This class specialises iostream for std io FILEs. See stdiostream. h.

ios (page 195). streambuf- public (page 232). streambuf- protected (page 224).
filebuf (page 187). stdiobuf (page 223). strstreambuf (page 240). istream (page 206),
ostream (page 217). !stream (page 191). strstream (page 237). manipulators (page 213)

Synopsis

Description

The Streams library

filebuf

filebuf - buffer for file 1/0

#include <iostream.h>

typedef long strearnoff, strearnpos;
class ios {
public:

enum seek_dir { beg, cur, end };
enum open_mode { in , out, ate, app, trunc, nocreate, noreplace }
II and lots of other stuff; see ios on page 195

} ;

#include <fstream.h>

class filebuf : public streambuf {
public:

} ;

static const int openprot I• default protection for open •I

filebuf•
filebuf•
int
int
filebuf•
streampos
strearnpos
streambuf•
int

filebuf()
-filebuf () ;
filebuf(int d);
filebuf(int d, char• p, int len)

attach(int d) ;
close();
fd();
is_open();
open(char •name, int omode, int prot=openprot)
seekoff(streamoff, seek_dir, int omode) ;
seekpos(streampos, int omode)
setbuf(char• p, int len) ;
sync() ;

filebufs specialise streambufs to use a file as a source or sink of characters.
Characters are consumed by doing writes to the file, and are produced by doing
reads. When the file is seekable, a filebuf allows seeks. At least 4 characters of
putback are guaranteed. When the file permits reading and writing, the f ilebuf
permits both storing and fetching. No special action is required between gets and
puts (unlike stdio) A filebuf that is connected to a file descriptor is said to be
open.

Under RISC OS openprot is ignored.

187

filebuf

188

The reserve area (or buffer; see streambuf- public on page 232 and streambuf- protected on
page 224) is allocated automatically if one is not specified explicitly with a
constructor or a call to setbuf (). filebufs can also be made unbuffered
with certain arguments to the constructor or setbuf () , in which case a system
call is made for each character that is read or written. The get and put pointers
into the reserve area are conceptually tied together; they behave as a single
pointer Therefore. the descriptions below refer to a single get/put pointer.

In the descriptions below. assume:

• f is a filebuf.

• pfb is a filebuf*.

• psb is a streambuf*.

• i. d, len, and prot are ints.

• name and ptr are char*s.

• mode is an int representing an open_mode.

• offisastreamoff.

• p and pos are streampos's.

• dir is a seek dir.

Constructors

filebuf ()

Constructs an initially closed filebuf.

filebuf(d)

Constructs a filebuf connected to fi le descriptor d.

filebuf(d, p, len)

Constructs a filebuf connected to file descriptor d and initialised to use the
reserve area starting atp and containing len bytes. If pis null or len is zero or less.
the f ilebuf will be unbuffered

The Streams library

Members

pfb=f.attach(d)

Connects f to an open file descriptor, d. attach () normal ly returns &f, but
returns 0 iff is already open

pfb= f. close ()

Flushes any wa iting output, closes the file descriptor, and disconnects f . Unless an
error occurs, f's error state wi ll be cleared. c l ose () returns &f unless errors occur.
in which case it returns 0. Even if errors occur. close () leaves the file descriptor
and f closed.

i =f.fd()

Returns i. the fi le descriptor f is connected to. Iff is closed. i is EOF.

i =f.is_open()

Returns non-zero when f is connected to a fi le descriptor. and zero otherwise.

pfb= f . open(name , mode , prot)

Opens file name and connects f to it. If the file does not already exist, an attempt
is made to create it. unless ios: : nocreate is specified in mode. Under RISC OS.
prot is ignored. Failure occurs iff is already open. open () normall y returns &f.

but if an error occurs it returns 0. The members of open_mode are bits that may be
OR'd together. [Because the OR'ing returns an int, open() takes an int rather
than an open_mode argument.) The meanings of these bits in mode are described
in detail infstrearn on page 19 1.

p =f.seekoff(off, dir, mode)

Moves the get/put pointer as designated by o f f and dir. It may fail if the file that
f is attached to does not support seeking, or if the attempted motion is otherwise
invalid (such as attempting to seek to a position before the beginning of fi le) off
is interpreted as a count relative to the place in the file specified by dir as
described in strearnbuf- public on page 232. mode is ignored. seekoff () returns p ,
the new position. or EOF if a failure occurs. The position of the file after a failure is
undefined.

189

filebuf

See also

190

p =f . seekpos(pos, mode)

Moves the file to a position pos as described in streambuf- public on page 232.
mode is ignored. seekpos () normally returns pos, but on failure it returns EOF.

psb=f.setbuf(ptr, l e n)

Sets up the reserve area as len bytes beginning at ptr. If ptr is null or len is less
than or equal to 0, f will be unbuffered. setbuf () normally returns &f. However.
iff is open and a buffer has been allocated, no changes are made to the reserve
area or to the buffering status, and setbuf () returns 0.

i =f. sync()

Attempts to force the state of the get/put pointer off to agree (be synchronised)
with the state of the file f . fd () . This means it may write characters to the file if
some have been buffered for output or attempt to reposition (seek) the file if
characters have been read and buffered for input Normally, sync () returns 0. but
it returns EOF if synchronisation is not possible

Sometimes it is necessary to guarantee that certain characters are written together.
To do this, the program should use setbuf () (or a constructor) to guarantee that
the reserve area is at least as large as the number of characters that must be
written together. It can then call sync () . then store the characters, then call
sync () again .

streambuf - public (page 232), streambuf - protected (page 224). fstream (page 191).

Synopsis

The Streams library

fstream

fstream - iostream and streambuf specialised to files

#include <fstream.h>

typedef long streamoff, streampos;
class ios {
public:

enum seek_dir { beg, cur, end } ;
enum open_mode { in, out, ate, app, trunc, nocreate, noreplace
enum io_state { goodbit=O, eofbit, failbit, badbit
II and lots of other stuff; see ios on page 195

} ;

class ifstream istream

} ;

void
void
void

filebuf*
void

class ofstream

} ;

void
void
void

filebuf*
void

if stream()
-ifstream() ;
ifstream(const char* name, int =ios::in,

int prot =filebuf::openprot)
ifstream(int fd)
ifstream(int fd, char* p, int 1) ;

attach(int fd) ;
close() ;
open(char* name, int =ios::in,

int prot=filebuf::openprot)
rdbuf()
setbuf(char• p, int 1) ;

ostream {
of stream()
-ofstream() ;
ofstream(const char* name, int =ios::out,

int prot =filebuf::openprot)
ofstream(int fd)
ofstream(int fd, char* p, int l) ;

attach(int fd) ;
close() ;
open(char• name, int =ios: :out,

int prot=filebuf::openprot)
rdbuf () ;
setbuf(char* p, int l) ;

191

fstream

Description

class fstream iostream {

} ;

void
void
void

filebuf*
void

fstream()
-fstream() ;
fstream(const char• name, int mode,

int prot =filebuf::openprot)
fstream(int fd)
fstream(int fd, char• p, int 1) ;

attach(int fd) ;
close() ;
open(char• name, int mode,

int prot=filebuf::openprot)
rdbuf() ;
setbuf(char* p, int 1) ;

if stream. of stream. and fstream speciali se istream. ostream, and
iostream. respectively, to files. That is, the associated streambuf will be a
filebuf.

In the following descriptions. assume:

• f is any of if stream. of stream, or fstream

• pfb is a filebuf* .

• psb is a streambuf*.

• name and ptr are char*s.

• i . fd. len . and prot are ints

• mode is an int representing an open_mode

Constructors

192

The constructors for xstream, where xis either if. of. or f. are

xstream()

Constructs an unopened xstream.

xstream(name, mode , prot)

Constructs an xstream and opens file name using mode as the open mode.
Under RISC OS prot is ignored. The error state (io_state) of the constructed
xstream will indicate failure in case the open fail s.

The Streams library

xstream(d)

Constructs an xstrearn connected to file descriptor d. which must be already
open.

xstream(d,ptr,len)

Constructs an xstrearn connected to file descriptor d, and. in addition. initialises
the associated filebuf to use the len bytes at ptr as the reserve area. If ptr is
null or len is 0. the filebuf will be unbuffered.

Member functions

f .attach(d)

Connects f to the file descriptor d. A failure occurs when f is already connected to
a fi le. A failure sets ios:: failbit in f's error state.

f . close()

Closes any associated f i lebuf and thereby breaks the connection of the f to a
file.

f's error state is cleared except on failure. A failure occurs when the call to
f . rdbuf () ->close () fails

f.open(name,mode,prot)

Opens file name and connects f to it If the file does not already exist, an attempt
is made to create it unless ios: : nocreate is set Under RISC OS prot is
ignored. Failure occurs iff is already open, or the ca ll to f. rdbuf ()->open ()
fails. ios: : failbi t is set in f's error status on fa ilure. The members of
open_rnode are bits that may be OR'd together (Because the OR'ing returns an
int, open() takes an int rather than an open_rnode argument.) The mean ings
of these bits in mode are:

ios: :app

ios: : ate

ios: : in

A seek to the end of file is performed. Subsequent data
written to the file is always added (appended) at the end
of file. ios: : app implies ios : :out.

A seek to the end of the file is performed during the
open () . ios: :ate does not imply ios: :out.

The fi le is opened for input. ios:: in is implied by
construction and opens of if streams. For £streams it
indicates that input operations should be al lowed if
possible. Is is legal to include ios:: in in the modes of

193

fstream

See also

194

ios: :out

ios: :trunc

ios: : nocreate

ios ::noreplace

pfb=f . rdbuf ()

an ostream in which case it implies that the original file
(i f it exists) should not be tru ncated If the file being
opened for input does not exist. the open will fail.

The file is opened for output ios : :out is implied by
construction and opens of of streams For fstream it
says that output operations are to be allowed
ios : :out may be specified.

If the file already exists. its contents will be truncated
(discarded). Thi s mode is implied when ios: :out is
specified (including implicit speci fica tion for of stream)
and neither ios : : ate nor ios : : app is specified.

If the file does not already exist. the open () will fail

If the file already exists. the open () will fail. On ly valid
with ios : : out.

Returns a pointer to the f ilebuf associated with f . f stream: : rdbuf () has
the same meaning as iostream: : rdbuf () but is typed differently

f. setbuf (p, len)

Has the usual effect of a setbuf () (see filebuf on page 187). offering space for a
reserve area or requesting unbuffered 110 Normally the returned psb is
f. rdbuf () . but i t is 0 on fai lure A failu re occurs if f is open or the call to
f. rdbuf () ->setbuf fails.

filebuf (page 187). istream (page 206), ios (page 195), ostream (page 217). streambuf ­
pub/ic (page 232)

Synopsis

ios - input/output formatting

#include <iostrearn.h>

class ios {
public:

The Streams library

lOS

enurn io_state { goodbit=O, eofbit, failbit, badbit };

public:

enurn open_mode { in, out, ate, app, trunc, nocreate, noreplace };
enurn seek_dir { beg, cur, end };
!• flags for controlling format •/
en urn { skipws=O 1,

left=02, right=04, internal=OlO,
dec=020, oct=040, hex=OlOO,
showbase=0200, showpoint=0400,
uppercase=OlOOO, showpos=02000,
scientific=04000, fixed=OlOOOO,
unitbuf=020000, stdio=040000 };

stati c const long basefield;
!• decloct l hex •/

static const long adjustfield;
!• left l right l internal •/

static const long floatfield;
!• scientificlfixed •/

int
static long
void
int
int
char
char
long
long
int
long&
int

int
int
streambuf•
void* &
int
long
long
static void

ios(strearnbuf*);
bad();
bitalloc ();
clear(int state =0);
eof();
fail();
fill();
fill(char);
flags();
flags (long);
good();
iword(int);
operator!();
operator void*();
precision();
precision(int);
rdbuf();
pword(int);
rdstate();
setf(long setbits, long field);
setf (long);
sync_with_stdio();

195

ios

Description

196

ostream•
ostream*
long
int
int
static int

protected:

private:

void
} ;

tie();
tie (ostream•);
unsetf(long);
width();
width(int);
xalloc();

ios();
init (streambuf*);

ios (ios&) ;
operator=(ios&);

I* Manipulators •/
ios& dec (ios&)
ios& hex(ios&) ;
ios& oct (ios&) ;
ostream& endl(ostream& i) ;
ostream& ends(ostream& i) ;
ostream& flush (ostream&)
istream& ws(istream&) ;

The stream classes derived from class ios provide a high level interface that
supports transferring formatted and unformatted information into and out of
streambufs. This section describes the operations common to both input and
output

Severa l enumerations are declared in class ios, open_mode, io_ state.
seek_dir. and format flags, to avoid polluting the global name space. The
io_states are described in Error slal.es on page 197. The format fields are
described in Formatting on page 198. The open_modes are described in detail
under pfb=f.open(name. mode. prot) on page 189. in the section [stream The
seek_dirs are described under pos=sb->seekoff(off, dir. mode) on page 229. in the
section streambuf - public.

In the following descriptions assume:

• s and s2 are ioss.

• sr is an ios&.

• sp is a ios* .

• i. oi, j. and n are ints.

• l, f. and bare longs.

• c and oc are chars.

• osp and oosp are ostream*s

... The Streams library ---- ---........ - ...
• sb is a streambuf*.

• pos is a streampos.

• off is a streamoff.

• dir is a seek dir.

• mode is an int representing an open_mode.

• fct is a function with type ios& (*) (ios&) .

• vp is a void*& .

Constructors and assignment

ios(sb)

The streambuf denoted by sb becomes the streambuf associated with the
constructed ios. If sb is nu ll , the effect is undefined.

ios(sr)
s2=s

Copying of ioss is not well-defined in general. therefore the constructor and
assignment operators are private so that t he compiler wi ll complain about
attempts to copy ios objects. Copying pointers to iostreams is usua lly what is
desired.

ios()
init(sb)

Because class ios is now inherited as a virtual base class, a constructo r with no
arguments must be used. This constructor is declared protected. Therefore
ios: : ini t (streambuf*) is declared protected and must be used for
init ial isation of derived classes.

Error states

An ios has an interna l error state (which is a collection of the bits declared as
io_states). Members related to the erro r state are:

i=s.rdstate()

Returns the current error state.

s.clear(i)

Stores i as the error state. If i is zero, t his clears all bits. To set a bit without
clea ring previously set bits requires something like
s.clear(ios::badbit l s.rdstate()).

197

ios

198

i=s .good()

Returns non-zero if the error state has no bits set. zero otherwise.

i=s .eo£()

Returns non-zero if eofbit is set in the error state. zero otherwise. Normally this
bit is set when an end-of-file has been encountered during an extraction.

i=s. fail()

Returns non-zero if either badbi t or f ailbi t is set in the error state. zero
otherwise. Normally this indicates that some extraction or conversion has fa iled.
but the stream is sti ll usable. That is. once the failbit is cleared, 1/0 on scan
usually conti nue.

i=s .bad()

Returns non-zero if badbi t is set in the error state, zero otherwise. This usually
indicates that some operation on s. rdbuf {) has failed. a severe error. from
which recovery is probably impossible. That is, it will probably be impossible to
continue 1/0 operations on s .

Operators

1\vo operators are defined to allow convenient checking of the error state of an
ios: operator! () and operator void* {) .The latter converts an ios to a
pointer so that it can be compared to zero. The conversion wi II return 0 iff ailbi t
or badbit is set in the error state. and will return a pointer value otherwise. This
pointer is not meant to be used. This allows one to write expressions such as:

if (cin) ...
if (cin >> x) ...

The ! operator returns non-zero if failbi tor badbi t is set in the error state.
which allows expressions like the following to be used

if (!cout) ...

Formatting

An ios has a format state that is used by input and output operations to control
the details of formatting operations. For other operations the format state has no
particular effect and its components may be set and examined arbitrarily by user
code. Most formatting details are controlled by using the flags {) . setf {).and
unsetf () functions to set the following flags, which are declared in an
enumeration in class ios. Three other components of the format state are
contro lled separately with the functions fill (),width {) . and precision {) .

The Streams library
...

skipws

If skipws is set. whitespace will be skipped on input. This applies to scalar
extractions. When skipws is nol set. whitespace is not skipped before the
extractor begins conversion. If skipws is not set and a zero length field is
encountered. the extractor will signal an error. Additiona lly, the arithmetic
extractors will signal an error if skipws is not set and a whitespace is
encountered.

left
right
internal

These flags control the padding of a value. When left is set. the value is
left-adjusted, that is. the fill character is added after the value. When right is set,
the value is right-adjusted, that is. the fill character is added before the value.
When internal is set. the fill character is added after any leading sign or base
indication. but before the value. Right-adjustment is the defau lt if none of these
flags is set. These fields are collectively identified by the static member.
ios:: adjustfield The fill character is controlled by the fill () function.
and the width of padding is controlled by the width () function

dec
oct
hex

These flags control the conversion base of a value. The conversion base is 10
(decimal) if dec is set. but if oct or hex is set. conversions are done in octa l or
hexadecimal. respectively. If none of these is set. insertions are in decima l. but
extractions are interpreted according to the C++ lexical conventions for integra l
constants. These fields are col lectively identified by the static member.
ios: : basef ield. The manipulators hex. dec, and oct can also be used to set
the conversion base; see the section Built-in Manipulators on page 204.

showbase

If showbase is set. insertions will be converted to an external form that can be
read according to the C++ lexical conventions for inlegral constants. showbase is
unset by default

showpos

If showpos is set, Lhen a'+' will be inserted inlo a decimal conversion of a positive
inlegra l value.

199

ios

.....

200

wnn - ..
uppercase

lf uppercase is set. then an uppercase 'X' wi ll be used for hexadecima l
conversion when showbase is set, or an uppercase 'E' will be used to print
floating point numbers in scientific notation.

showpoint

lf showpoint is set. trailing zeros and decimal points appear in the result of a
fl oating point conversion.

scientific
fixed

These flags control the format to which a floating point value is converted for
insertion into a stream. lf scientific is set. the va lue is converted using scientific
notat ion, where there is one digit before the decimal point and the number of
digits after it is equal to the precision (see below). which is six by default. An
uppercase 'E' will introduce the exponent if uppercase is set, a lowercase ·e· will
appear otherwise. If fixed is set. the va lue is converted to decimal notation with
precision digits after the decimal point. or six by default. lf neither
scientific nor fixed is set. then the value will be converted using either
notation, depending on the va lue: scientific notation wi ll be used if the exponent
resulting from the conversion is less than - 4 or greater than or equa l to
precision digits. Otherwise the value wil l be converted to decimal notation with
precision digits total lf showpoint is not set, tra il ing zeroes are removed from
the resu lt and a decimal point appears on ly if it is followed by a digit
scientific and fixed are collectively identified by the static member
ios:: floatfield.

unitbuf

When set. a flush is performed by ostream: :osfx() after each insertion. Uni t
buffering provides a compromise between buffered output and unbuffered output
Performance is better under unit buffering than unbuffered output. which makes a
system ca ll for each character output. Unit buffering makes a system ca ll for each
insertion operation, and doesn't require the user to call ostream: :flush () .

stdio

When set. stdout and stderr are flushed by ostream: : osfx () after each
insertion.

The Streams library -----· -
The fol lowing funct ions use and set the format flags and variables

oc=s . fi 11 (c)

Sets the fill character format state variable to c and returns the previous va lue. c wi II
be used as the padding character, if one is necessary (see width () below). The
defau lt fil l or padd ing character is a space The positioning of the fi l l character is
determined by the right . left. and i nternal flags; see above. A
parameterised manipu lator. setfi l l , is also ava ilable for setting the fill
character; see ma11ipulators on page 213.

c =s . fill()

Returns the 'fill character' format state variable.

l =s. flags ()

Returns the current format flags

l =s . flags (f)

Resets al l the format flags to those specified in f and returns the previous settings.

oi=s . precision(i)

Sets the precision format state variable to i and returns the previous value.
Th is variable controls the number of significant digits inserted by the float ing point
inserter. The defau lt is 6. A parameterised manipulator. setprecision, is also
available for setting the precision: see manipulators on page 213.

i=s. precision()

Returns the precis ion format state variable.

1 =s . setf(b)

Turns on ins the format flags marked in band returns the previous settings. A
parameterised manipulator, setiosflags. performs the same function; see
manipulators on page 213.

1=s.setf(b,f)

Resets ins only the format flags specified by f to the settings marked in b. and
returns the previous settings. That is. the format flags specified by fare cleared in
s. then reset to be those marked in b. For example, to change the conversion base
in s to be hex. one could write: s . set£ (ios : : hex, ios : : base£ ield).
i os : :base field specifies the conversion base bits as candidates for change.

201

ios

202

and ios:: hex specifies the new value. s. setf (0, f) will clear all the bits
specified by f. as will a parameterised manipulator, resetiosflags; see
nnmipulators on page 213.

l=s . unsetf(b)

Unsets ins the bits set in b and returns the previous settings.

oi=s.width(i)

Sets the field-width format variable to i and returns the previous value. When the
field width is zero (the default). inserters will insert only as many characters as
necessary to represent the value being inserted. When the field-widtli is non-zero.
the inserters will insert at least that many characters. using the fill character to pad
the value. if the value being inserted requires fewer than field-width characters to be
represented. However, the numeric inserters never truncate values. so if the value
being inserted will not fit in field-widtli characters, more than field-widtfr characters
will be output The {ield-widtFJ is always interpreted as a minimum number of
characters; there is no direct way to specify a maximum number of characters. The
field-width format variable is reset to the default (zero) after each insertion or
extraction. and in this sense it behaves as a parameter for insertions and
extractions. A parameterised manipulator. setw, is also avai lable for setting the
width; see manipulators on page 213.

i=s. width ()

Returns the field-widtfr format variable.

User-defined Format Flags

Class ios can be used as a base class for derived classes that require additiona l
format flags or variables. The iostream library provides several functions to do this.
The two static member functions ios:: xalloc and ios:: bi talloc. allow
several such classes to be used together without interference.

b=ios ::bitalloc()

Returns a long with a single, previously unallocated. bit set. This allows users who
need an add itiona l flag to acquire one. and pass it as an argument to
ios: : setf () . for example.

i=ios::xalloc()

Returns a previously unused index into an array of words available for use as
format state variables by derived classes.

The Streams library

l=s.iword(i)

When i is an index allocated by ios:: xalloc, iword() returns a reference to
the ith user-defined word.

vp=s.pword(i)

When i is an index allocated by ios: : xalloc, pword () returns a reference to
the ith user-defined word. pword() is the same as iword except that it is typed
differently.

Other members

sb=s.rdbuf()

Returns a pointer to the streambuf associated with s when s was constructed .

ios::sync_with_stdio()

Solves problems that arise when mixing stdio and iostreams. The first time it is
cal led it will reset the standard iostreams (cin, cout, cerr, clog) to be streams
using stdiobufs. After that, input and output using these streams may be mixed
with input and output using the corresponding FILEs (stdin, stdout, and
stderr) and will be properly synchron ised. sync_with_stdio() makes cout
and cerr unit buffered (see ios:: uni tbuf and ios:: stdio above) Invoking
sync_with_stdio() degrades performance a variable amount, depending on
the length of the strings being inserted (shorter strings incur a larger performance
hit) .

oosp=s.tie(osp)

Sets the tie variable to osp, and returns its previous value. This variable supports
automatic 'flush ing· of ioss. If the tie variable is non-null and an ios needs
more characters or has characters to be consumed, the ios pointed at by the tie
variable is flushed. By default, cin is tied initially to cout so that attempts to get
more characters from standard input result in flushing standard output.
Additionally. cerr and clog are tied to cout by default For other ioss. the tie
variable is set to zero by default

osp=s. tie ()

Returns the tie variable.

203

ios

?()4

Built-in Manipulators

Some convenient man ipulato rs (fu nctions that take an ios&, an i stream&, or an
ostream& and return their argument; see manipulators on page 213) are:

sr<<dec
sr>>dec

These set the conversion base format flag to I 0

sr<<hex
sr>>hex

These set t he conversion base format flag to I 6.

sr<<oct
sr>>oct

These set the conversion base format fl ag to 8.

sr>>ws

Extracts whitespace characters. See istream on page 206.

sr<<endl

Ends a l ine by insert ing a newline character and flushing See ostream on page 2 I 7.

sr<<ends

Ends a stri ng by inserting a null (0) character. See ostream on page 217.

sr<<flush

Flushes outs. See ostream on page 217.

Severa l parameterised manipu lators that operate on ios objects are described in
manipulators on page 2 I 3: setw, setf ill. setprecision, setiosf lags, and
resetiosflags.

The streambuf associated wi th an ios may be man ipu lated by other methods
than th rough the ios. For example. characters may be stored in a queuelike
streambuf through an ostream while they are being fetched th rough an
i str eam. Or for efficiency some part o f a program may choose to do streambuf
operations d irectly rather than through the ios. In most cases the program does
not have to worry about th is possibi li ty, because an ios never saves information
about the internal state of a streambuf. For example, if the streambuf is
repositioned between extraction operations the extract ion (input) will proceed
normally

See also

The Streams library

Introduction (page 182). streambuf- protected (page 224). srreambuf- public (page 232).
istream (page 206). ostream (page 217). manipulators (page 2 I 3)

205

istream

Synopsis

?nn

istream

istream- formatted and unformatted input

#include <iostream.h>

typedef long streamoff, streampos;
class ios {
public:

} ;

enum seek dir { beg, cur, end };
enum open_mode { in, out, ate, app, trunc, nocreate, noreplace }
I• flags for controlling format •I
enum { skipws=Ol ,

left=02, right=04, internal=OlO,
dec=020, oct=040, hex=OlOO,
showbase=0200, showpoint=0400 ,
uppercase=OlOOO, showpos=02000,
scientific=04000, fixed=OlOOOO,
unitbu£=020000 , stdio=040000 };

II and lots of other stuff; see ios on page 195

class istream
public:

public ios

int
istream&
istream&

istream&
istream&
istream&
int
istream&
istream&
istream&
int
int
istream&
istream&
istream&
istream&
istream&
int
streampos

istream(streambuf*);
gcount();
get(char* ptr, int len, char delim='\n');
get(unsigned char• ptr,int len , char delim='\n');

get(unsigned char&);
get(char&);
get(streambuf& sb, char delim ='\n');
get();
getline(char• ptr, int len, char delim='\n');
getline(unsigned char• ptr, int len, char delim='\n');
ignore(int len=l,int delim=EOF);
ipfx(int need=O);
peek();
putback(char);
read(char• s, int n);
read(unsigned char• s, int n);
seekg(streampos) ;
seekg (streamoff , seek_dir);
sync();
tellg();

Description

} ;

istream&
istream&
istream&
istream&
istream&
istream&
istream&
istream&
istream&
istream&
istream&
istream&
istream&
istream&
istream&

operator>>(char*);
operator>>(char&);
operator>>(short&);
operator>>(int&);
operator>>(long&);
operator>>(float&);
operator>>(double&);
operator>>(unsigned char*);
operator>>(unsigned char&);
operator>>(unsigned short&);
operator>>(unsigned int&);
operator>>(unsigned long&);
operator>>(streambuf*);
operator>>(istream& (*)(istream&));
operator>>(ios& (*)(ios&));

class istream_withassign : public istream {
istream withassign();

istream& operator~(istream&);

istream& operator~(streambuf*);

} ;

extern istream_withassign cin;

istream&
ios&
ios&
ios&

ws(istream&);
dec(ios&)
hex(ios&)
oct(ios&)

The Streams library

istreams support interpretation of characters fetched from an associated
streambuf. These are commonly referred to as input or extraction operations.
The istrearn member functions and related functions are described below

In the following descriptions assume that

• ins is an istream .

• inswaisanistream_withassign

• insp is an istrearn* .

• cis a char&

• delim is a char .

• ptr is a char* or unsigned char* .

• sb is a streambuf& .

• i . n . len. d . and need are ints

• pos is a streampos .

• off is a streamoff .

207

istream

20R

• dir is a seek dir.

• manip is a function with type istream& (*) (istream&).

Constructors and assignment

istream(sb)

Initialises ios state variables and associates buffer sb with the istream.

istream_withassign()

Does no initialisation.

inswa=sb

Associates sb with inswa and initialises the entire state of inswa.

inswa=ins

Associates ins->rdbuf () with inswa and initialises the entire state of inswa.

Input prefix function

i = ins.ipfx(need)

If ins's error state is non-zero, returns zero immediately. If necessary (and if it is
non-null). any ios tied to ins is flushed (see the description of ios:: tie () on
page 203 onwards of ios. Flushing is considered necessary if either need==O or if
there are fewer than need characters immediately available. If ios:: skipws is
set in ins. flags () and need is zero, then leading whitespace characters are
extracted from ins. ipfx () returns zero if an error occurs while skipping
whitespace; otherwise it returns non-zero.

Formatted input functions call ipfx (0). while unformatted input functions call
ipfx (1); see below.

Formatted input functions (extractors)

ins>>x

Ca lls ipfx (0) and if that returns non-zero. extracts characters from ins and
converts them accord ing to the type of x. It stores the converted value in x. Errors
are indicated by setting the error state of ins. ios: : failbi t means that
characters in ins were not a representation of the required type. ios:: badbit
indicates that attempts to extract characters failed ins is always returned.

The Streams library

The details of conversion depend on the va lues of ins's format state flags and
variables (see ios on page 195) and the type of x. Except that extractions that use
width reset it to 0, the extraction operators do not change the value of ostream's
format state. Extractors are defined for the following types. with conversion rules
as described below.

char* .
unsigned char*

char&,
unsigned

short&,
unsigned
int& ,
unsigned
long&.
unsigned

float&,
double&

char&

short&,

int&,

long&

Characters are stored in the array pointed at by x until a
whitespace character is found in ins. The terminating
whitespace is left in ins . If ins. width () is non-zero it
is taken to be the size of the array. and no more than
ins. width () -1 characters are extracted A
terminating null character (0) is always stored (even
when nothing else is done because of ins's error
status). ins. width () is reset to 0.

A character is extracted
and stored in x

Characters are extracted and converted to an integral
value according to the conversion specified in ins's
format flags Converted characters are stored in x The
first character may be a sign (+or-). After that . if
ios : : oct. ios: : dec, or ios : :hex is set in
ins. flags ().the conversion is octal. decimal. or
hexadecimal. respectively. Conversion is terminated by
the first 'non-digit.' which is left in ins. Octal digits are
the characters ·o· to '7'. Decimal digits are the octa l
digits pi us '8' and '9'. Hexadecimal digits are the decimal
digits plus the letters ·a· through ·r· (in either upper or
lower case). If none of the conversion base format flags
is set. then the number is interpreted according to C++
lexical conventions. That is. if the first characters {after
the optional sign) are Ox or OX a hexadecimal
conversion is performed on following hexadecimal
digits. Otherwise, if the first character is a 0, an octal
conversion is performed. and in all other cases a
decimal conversion is performed. ios: : failbi tis set
if there are no digits (not counting the 0 in Ox or OX)
during hex conversion) available.

Converts the characters according to C++ syntax for a
float or double. and stores the result in x
ios :: failbit is set if there are no digits available in
ins or if it does not begin with a well formed floating
point number.

209

istream

210

The type and name (operator>>) of the extraction operations are chosen to give
a convenient syntax for sequences of input operations. The operator overloading of
C++ permits extraction functions to be declared for user-defined classes. These
operations can then be used with the same syntax as the member functions
described here.

ins>>sb

If ios. ipfx (0) returns non-zero. extracts characters from ios and inserts them
into sb. Extraction stops when EOF is reached. Always returns ins .

Unformatted input functions

These functions call ipfx (1) and proceed only if it returns non-zero:

insp=&i ns. get(ptr,len,de lim)

Extracts characters and stores them in the byte array beginning at ptr and
extending for len bytes. Extraction stops when delim is encountered (delim is
left in ins and not stored). when ins has no more characters. or when the array
has only one byte left. get always stores a terminating null. even if it doesn't
extract any characters from ins because of its error status. ios: : f ailbi t is set
only if get encounters an end of file before it stores any characters.

ins p =&ins .get(c)

Extracts a single character and stores it in c.

in sp=&ins . get(s b,de lim)

Extracts characters from ins . rdbuf () and stores them into sb. It stops if it
encounters end of file or if a store into sb fails or if it encounters delim (which it
leaves in ins). ios:: failbit is set if it stops because the store into sb fails.

i =ins. g e t() .

Extracts a character and returns it. i is EOF if extraction encounters end of file.
ios: : failbi t is never set.

ins p =&ins.getline(ptr,le n , d e lim)

Does the same thing as ins. get (ptr, len , de lim) with the exception that it
extracts a terminating delim character from ins. In case delim occurs when
exactly len characters have been extracted, termination is treated as being due to
the array being filled, and this delim is left in ins.

The Streams library

insp=&ins.ignore(n,d)

Extracts and throws away upton characters. Extraction stops prematurely if dis
extracted or end of file is reached. If dis EOF it can never cause termination .

insp=&ins.read(ptr,n)

Extracts n characters and stores them in the array beginning at ptr. If end of file is
reached before n characters have been extracted. read stores whatever tt can
extract and sets ios : : failbi t . The number of characters extracted can be
determined via ins . gcount ()

Other members

i=ins.gcount()

Returns the number of characters extracted by the last unformatted input function.
Formatted input functions may call unformatted input functions and thereby reset
this number

i=ins.peek()

Begins by calling ins . ipfx(1). If that call returns zero or if ins is at end of file.
it returns EOF Otherwise it returns the next character without extracting it

insp=&ins.putback(c)

Attempts to back up ins. rdbuf () . c must be the character before
ins . rdbuf () 's get pointer. l Unless other aclivity is modifying ins. rdbuf ()
this is the last character extracted from ins.) If it is not. the effect is undefined.
putback may fail(and set the error state) Although it is a member of istream.
putback never extracts characters. so it does not call ipfx It wtll , however.
return without doing anything if the error state is non-zero.

i=&ins.sync()

Establishes consistency between internal data structures and the external source
of characters. Calls ins . rdbuf () ->sync () ,which is a virtual function, so the
details depend on the derived class. Returns EOF to indicate errors.

ins>>manip

Equivalent to manip (ins) . Syntactically this looks like an extractor operation.
but semantically it does an arbitrary operation rather than converting a sequence
of characters and storing the result in manip. A predefined manipulator. ws. is
described below

211

istream

Caveats

See also

212

Member functions related to positioning

insp=&ins.seekg(off,dir)

Repositions ins. rdbuf () 's get pointer. See streambuf- public on page 232 for a
discussion of position ing.

insp=&ins.seekg(pos)

Repositions ins . rdbuf () ·s get pointer. See streambuf- public on page 232 for a
discussion of posit ioning.

pos=ins. tellg ()

The current position of ios. rdbuf () ·s get pointer. See streambuf- public on
page 232 for a discussion of positioning.

Manipulator

ins>>ws

Extracts wh itespace characters.

ins>>dec

Sets the conversion base format flag to I 0. See ios on page 195.

ins>>hex

Sets the conversion base format flag to 16. See ios on page 195.

ins>>oct

Sets the conversion base format flag to 8. See ios on page 195.

There is no overflow detection on conversion of integers.

ios (page 195). st.reambuf - public (page 232). manipulators (page 213)

Synopsis

The Streams library

manipulators

manipulators- iostream out of band manipulations

#include <iostream.h>
#include <iomanip.h>

template <class T>

class SHANIP {

} ;

SMANIP(ios& (*)(ios&,T), T);
friend istream& operator>>(istream&, SHANIP<T>&);
friend ostream& operator<<(ostream& , SMANIP<T>&);

template <class T>
class SAPP {

} ;

SAPP(T)(ios& (*)(ios&,T));
SHANIP<T> operator()(T);

template <class T>
class IHANIP {

IMANIP(istream& (*)(istream&,T), T) ;
friend istream& operator>> (istream&, IMANIP<T>&);

} ;
template <class T>
class lAPP {

} ;

lAPP(istream& (*)(istream&,T));
IHANIP<T> operator()(T);

template <class T>
class OMANIP {

OMANIP(ostream& (*)(ostream&,T), T);
friend ostream& operator<< (ostream&, OMANIP<T>&) ;

} ;

template <class T>
class OAPP {

} ;

OAPP(ostream& (*)(ostream&,T));
OMANIP<T> operator()(T);

template <class T>
class IOHANIP {

} ;

IOHANIP(iostream& (*)(iostream&,T), T);
friend istream& operator>>(iostream&, IOHANIP<T>&);
friend ostream& operator<<(iostream&, IOHANIP<T>&);

template <class T>
class IOAPP {

} ;

IOAPP(iostream& (*)(iostream&,T));
IOMANIP<T> operator()(T);

213

manipulators

Description

214

SMANIP<long>
SMANIP<int>
SMANIP<long>
SMANIP<int>
SMANIP<int>

resetiosflags(long);
setfill(int);
setiosflags(long);
setprecision(int);
setw(int w);

Manipulators are values that may be 'inserted into' or ·extracted from· streams to
achieve some effect (other than to insert or extract a value representation). with a
convenient syntax. They enable one to embed a function call in an expression
containing a series of insertions or extractions. For example. the predefined
manipulator for ostreams. flush, can be used as follows:

cout << flush

to flush cout. Several iostream classes supply manipulators: see ios on page 195.
ist.ream on page 206, and oslream on page 217. flush is a simple manipulator; some
manipulators take arguments, such as the predefined ios manipulators.
setfill and setw (see below)

In the following descriptions. assume

• t is a T, or type name.

• sis an ios.

• i is an istream.

• o is an ostream.

• io is an iostream.

• f is an ios& (*) (ios&).

• if is an istream& (*) (istream&).

• of is an ostream& (*) (ostream&).

• iof is an iostream& (*) (iostream&).

• n is an int.

• 1 is a long.

s<<SMANIP<T>(f,t)
s>>SMANIP<T>(f,t)
s<<SAPP<T>(f)(t)
s>>SAPP<T>(f)(t)

The Streams library -

Returns f (s, t). where s is the left operand of the insertion or extractor operator
(i .e s. i. o , or io).

i>>IMANIP<T>(if,t)
i>>IAPP<T>(if)(t)

Returns if (i , t) .

o<<OMANIP<T>(of,t)
o<<OAPP<T>(of)(t)

Returns o f (o, t).

io<<IOMANIP<T>(iof,t)
io>>IOMANIP<T>(iof,t)
io<<IOAPP<T>(iof)(t)
io>>IOAPP<T>(iof)(t)

Retu rns i of (io, t).

iomanip. h contains declarations of some manipulators that take an int or a
long argument. These manipulators all have to do with changing the format state
of a stream; see ios on page 195 for fu rther deta ils.

o<<setw(n)
i>>setw(n)

Sets the fi eld width of the stream (left-hand operand o or i) to n.

o<<setfill(n)
i>>setfill (n)

Sets the fi II character of the stream (o or i) to be n .

o<<setprecision(n)
i>>setprecision(n)

Sets the precision of the stream (o or i) to be n.

215

manipulators

See also

216

o<<setiosflags(l)
i>>setiosflags(l)

Turns on in the stream (o or i) the format flags marked in 1. (Calls o . setf (1) or
i.set£(1))

o<<resetiosflags(l)
i>>resetiosflags(l)

Clears in the stream (o or i 1 the format bits specified by 1. (Calls o. set£ (0,1)
or i. setf (0, 1))

ios (page 195). istream (page 206). ostream (page 217)

Synopsis

The Streams library ------ ·-~

ostream- formatted and unformatted output

#include <iostream.h>

typedef long streamoff, streampos;
class ios {
public:

en urn seek_dir { beg, cur, end };

ostream

en urn
enum

open_mode { in, out, ate, app, trunc, nocreate, noreplace }
{ skip~iS=Ol,

} ;

left=02, right=04, internal=OlO,
dec=020, oct=040, hex=OlOO,
showbase=0200, showpoint=0400,
uppercase=OlOOO, showpos =02000,
scientific=04000, fixed=OlOOOO,
unitbuf=020000, stdio=040000 };

II and lots of other stuff; see ios on page 195

class ostream public ios
public:

} ;

ostream(streambuf*);
ostream& flush();
int opfx();
ostream& put(char);
ostream&
ostream&
streampos
ostream&
ostream&
ostream&
ostream&
ostream&
ostream&
ostream&
ostream&
ostream&
ostream&
ostream&
ostream&
ostream&
ostream&
ostream&
ostream&
ostream&

seekp(streampos);
seekp(streamoff, seek_dir);
tellp();
write(const char* ptr, int n);
write(const unsigned char* ptr, int n);
operator<<(const char*);
operator<<(char);
operator<<(short);
operator<<(int);
operator<<(l ong);
operator<<(float);
operator<<(double);
operator<< (unsigned char);
operator<< (unsigned short);
operator<<(unsigned int);
operator<< (unsigned long);
operator<<(void*);
operator<<(streambuf*);
operator<< (ostream& (*)(ostream&));
operat or<< (ios& (*)(ios&));

217

ostream
..

Description

218

........... ==·--··. * * ¥ •• •t

class ostream_withassign {
ostream_withassign();

istream& operator=(istream&);
istream& operator=(streambuf*);

} ;

extern ostream_withassign cout;
extern ostream_withassign cerr;
extern ostream_withassign clog;

ostream&
ostream&
ostream&
ios&
ios&
ios&

endl(ostream&) ;
ends(ostream&) ;
flush(ostream&)
dec(ios&)
hex(ios&)
oct(ios&)

ostreams support insertion (storing) into a streambuf. These are commonly
referred to as output operations. The ostream member functions and related
functions are described below.

In the following descriptions. assume:

• outs is an ostream.

• outswa is an ostream_withassign.

• outsp is an ostream*.

• cis a char.

• ptrisachar* orunsigned char*.

• sb is a streambuf*

• i and n are ints.

• pos is a streampos.

• off is a streamoff.

• dir is a seek dir.

• manip is a function with type ostream& (*) (ostream&).

The Streams library

Constructors and assignment

ostream(sb)

In itialises ios state variables and associates buffer sb with the ostream.

ostream_withassign()

Does no initialisation This allows a file static variable of this type (cout for
example) to be used before it is constructed. provided it is assigned to first

outswa=sb

Associates sb with swa and initiali ses the entire state of outswa

i n swa= ins

Associates ins->rdbuf () with swa and initia lises the entire state of outswa.

Output prefix function

i=outs.opfx ()

If outs's error state is non-zero. returns immediately. lf outs . tie () IS non-null.
it is flushed. Returns non-zero except when outs's error state is non-zero

Output suffix function

osfx()

Performs ·suffix' actions before returning from inserters. If ios : : uni tbuf is set.
osfx () flushes the ostream If ios: : stdio is set . osfx () flushes stdout
and stderr

os f x () is called by all predefined inserters. and should be called by user-defined
inserters as well. after any direct manipulation of the streambuf It is not called
by the binary output functions.

219

ostream

')')()

Formatted output functions (inserters)

outs<<x

First calls outs. opfx () and if that returns 0 does nothing Otherwise inserts a
sequence of characters representing x into outs. rdbuf () Errors are indicated
by settmg the error state of outs. outs is always returned

xis converted into a sequence of characters (its representation 1 according to rules
that depend on x's type and outs's format state flags and variables (see ios on
page 19'5 Inserters are defined for the following types. with conversion rules as
described below:

char*

any integral type
except char and
unsigned char

void*

float, double

char.
unsigned char

The representation is the sequence of characters up to (but not
including) the terminating null of the string x points at.

If xis positive the representation contains a sequence of
decimal, octal, or hexadecima l digits with no leading zeros
according to whether ios :: dec. ios: :oct. or ios: :hex.
respectively, is set in ios's format flags. If none of those flags
are set, conversion defaults to decimal If xis zero. the
representation is a single zero character(OJ If xis negative
decimal conversion converts it to a minus sign (-)followed by
decimal digits If x is positive and ios: : showpos is set.
decimal conversion converts it to a plus sign(+) followed by
decimal digits. The other conversions treat all values as
unsigned If ios: : showbase is set 1n ios's format flags. the
hexadecimal representation contains Ox before the
hexadecimal digits. or ox if ios: :uppercase IS set If
ios: : showbase is set. the octal representation contains a
leading 0

Pointers are converted to integral values and then converted to
hexadecimal numbers as if ios : : showbase were set

The arguments are converted accord ing to the current values of
outs. precision ().outs. width () and outs's format
flags ios:: scientific, ios: : fixed. and
ios:: uppercase. (Sec ios on page 195 .) The defau lt va lue for
outs. precision () is 6. If neil her ios: : scientific nor
ios: :fixed is set, either fixed or scientific notation is
chosen for the representation, depending on the value of x.

No special conversion is necessary

The Streams library

After the representation is determined. padding occurs. If outs . width () i<>
greater than 0 and the representation contains fewer than outs. width ()
characters. then enough outs . fill () cha racters are added to bring the total
number of cha racters to ios . width () . If ios: :left is set in ios's format
flags, the sequence is left-adjusted. that is, characters are added after the
characters determined above. If ios: : right is set, the padding is added before
the characters determined above. If ios : :internal is set. the padding 1s added
after any leading sign or base indication and before the characters that represent
the value ios. width () is reset to 0. but all other format variables are
unchanged The resulting sequence (padding plus representation) is inserted into
outs.rdbuf()

outs<<sb

If outs . opfx () returns non-zero. the sequence of characters that can be I etched
from sb are inserted into outs. rdbuf () Insertion stops when no more
characters can be fetched from sb. No padding is performed Always returns outs

Unformatted output functions

outsp=&outs.put(c)

Inserts c into outs . rdbuf () . Sets the error state if the insertion fails

outsp=&outs.write(s,n)

Inserts then characters sta rting at s into outs . rdbuf () . These characters may
include zeros (i e. s need not be a null terminated st ring).

Other member functions

outsp=&outs.flush()

Storing characters into a streambuf does not always cause them to be consumed
(e.g. written to the external file) immediately flush () causes any characters that
may have been stored but not yet consumed to be consumed by ca lling
outs . rdbuf()->sync.

outs<<manip

Equivalent to manip (outs) Syntactically this looks like an insertion operation.
but semantically it does an arbitrary operation rather than converting manip to a
sequence of characters as do the insertion operators Predefined manipulators are
described below.

221

ostream

See also

222

Positioning functions

outsp=&ins.seekp(off,dir)

Repositions outs . rdbuf () 's put pointer. See streambuf - public on page 232 for a
discussion of positioning.

outsp=&outs . seekp(pos)

Repositions outs. rdbuf () ·s put pointer. See streambuf- public on page 232 for a
discussion of positioning

pos=outs.tellp()

The current position of outs. rdbuf () 's put pointer. See streambuf- public on
page 232 for a discussion of positioning.

Manipulators

outs<<endl

Ends a line by inserting a newline character and flushing.

outs<<ends

Ends a string by inserting a null (0) character.

outs<<flush

Flushes outs .

outs<<dec

Sets the conversion base format flag to I 0. See ios on page 195.

outs<<hex

Sets the conversion base format flag to 16. See ios on page 195.

outs<<oct

Sets the conversion base format flag to 8. See ios on page 195.

ios (page 195). streambuf- public (page 232). manipulators (page 21 '3)

Synopsis

Description

Caveats

See also

stdiobur- iostream specialised to sldio FILE

#include <iostream.h>
#include <stdiostream.h>
#include <stdio.h>

class stdiobuf : public streambuf {
stdiobuf(FILE* f);

FILE* stdiofile();
} ;

The Streams library

stdiobuf

Operations on a stdiobuf are renected on the associated FILE A stdiobuf is
constructed in unbuffered mode. which causes all operations to be renected
immed iately in the FILE. see kg () sand seekp () s are translated into
fseek () s. setbuf () has its usual meaning; if it supplies a reserve area.
buffering will be turned back on.

stdiobuf is intended to be used when mixing C and C++ code. New C++ code
should prefer to use filebufs. which have better performance

filebuf (page 187). islream (page 206), ostream (page 217). streambuf- public (page 232)

223

streambut protected

Synopsis

streambuf - protected

slreambuf- interface for derived classes

#include <iostream.h>

typedef long streamoff, streampos;
class ios {
public:

enum seek_dir { beg, cur, end };
enum open_mode { in, out, ate, app, trunc, nocreate, noreplace }
II and lots of other stuff; sec ios on page 195

} ;

class streambuf
public:

void

protected:
int
char*
int
char*
char*
char•
char•
void
char•
char*
void
char*
void
void
void
int
void

virtual int
virtual

streambuf () ;
streambuf(char* p, int len);
dbp() ;

allocate();
base();
blen();
eback();
ebuf();
egptr();
epptr();
gbump(int n);
gptr();
pbase();
pbump(int n);
pptr();
setg(char• eb, char* g, char* eg);
setp(char• p, char• ep);
setb(char• b, char• eb, int a=O);
unbuffered();
unbuffered(int);

deallocate();
-streambuf () ;

Description

The Streams library

public:
virtual int
virtual int
virtual int
virtual

virtual

virtual

pbackfail(int c);
overflow(int csEOF);
underflow();
strearnbuf•
setbuf(char• p, int len);
streampos
seekpos(streampos, int =ios::inlios:out);
streampos

virtual int
seekoff(streamoff, seek dir, int -ios::inlios:out);
sync();

} ;

streambufs implement the buffer abstraction described in streambuf- public on
page 232. However. the streambuf c la~s itself contains on ly basic members for
manipulating the characters and normally a class derived from streambuf will be
used This section describes the interface needed by programmers who are coding
a derived class Broadly speaking there are two kinds o f member functions
described here The non-virtual functions arc provided for manipulating a
streambuf in ways that are appropriate in a derived class Their descriptions
reveal details of the implementation that would be inappropriate in the public
interface The virtual functions permillhe derived class to specia lise the
streambuf class in ways appropriate to the specific sources and sinks that it is
implementing The descriptions of the virtual functions explain the obligations of
the v1rtuals of the dcnved class If the virtuals behave as specified the streambuf
will behave as specified in the publ1c interface. However. 1f the virtuals do not
behave as specified. then the streambuf may not behave properly, and an
iostream (or any other code) that relics on proper behaviour of the streambuf
mCly not behave properly either

In the following dc-;criptions assume:

• sb is a streambuf*

• i and n are ints.

• ptr. b. eb. p, ep, eb. g , and eg arc char*s.

• cis an int character (positive or EOF)).

• pas is a streampos (See strf!am6u{- public on page 2321

• off is a streamoff

• dir is a seekdir

• mode is an int representing an open_ mode.

225

streambuf protected

??f)

Constructors

streambuf ()

Constructs an empty buffer corresponding to an empty sequence

stre ambuf (b, len)

Constructs an empty buffer and then sets up the reserve area to be the 1 en bytes
starting at b .

The Get, Put, and Reserver area

The protected members of streambuf present an interface to derived classes
organised around three areas (arrays of bytes) managed cooperatively by the base
and derived classes. They are the qet area. the put an'a. and the reserve area (or buffer)
The get and the put areas are normally disjoint. but they may both overlap the
reserve area. whose primary purpose is to be a resource in which space for the put
and get areas can be allocated. The get and the put areas are changed as characters
are put into and got from the buffer. but the reserve area normally remains fixed.
The areas are defined by a collect ion o f char* va lues The buffer abstraction is
described in terms of pointers that point between characters. but the char*
values must point at chars. To establish a correspondence the char* values
shou ld be thought of as pointing just before the byte they really point at

Functions to examine the pointers

ptr=sb->base()

Returns a pointer to the first byte of the reserve area. Space between sb->base ()
and sb->ebuf () is the reserve area.

ptr=sb->eback()

Returns a pointer to a lower bound on sb->gptr () .Space between
sb->eback () and sb->gpt r () is available for put back

ptr=sb->ebuf()

Returns a pointer to the byte after the last byte of the reserve area .

ptr=sb->egptr ()

Ret urns a pointer to the byte after the last byte of t he get area

ptr=sb->epptr ()

Returns a pointer to the byte after the last byte of the put area

The Streams library

ptr=sb ->gptr ()

Returns a pointer to the first byte of the get area. The available characlerc:, arc those
between sb->gptr() and sb->egptr() . The next character fetched will be
* sb->gptr () l unless sb ->egptr () is less than or equa l to sb->gptr () .

ptr=sb->pbase()

Returns a pointer to the put area base. Characters between sb->pbase () and
sb->pptr () have been stored into the buffer and not yet consumed

ptr=sb ->pptr ()

Returns a pointer to the fi rst byte of the put area The space between sb->pptr ()
and sb->epptr () is the put area and characters will be stored here

Functions for setting the pointers

Note that to indicate that a particular area (gel put. or reserve) does not exist. all
the associated pointers should be set to Lero

sb- >setb (b , eb, i)

Sets base () and ebuf () to b and eb respectively i controls whether the area
will be subject to automatic deletion . If i is non-zero. then b will be deleted when
base is changed by another call of setb () . or when the destructor is called lor
*sb. If b and eb are both nul l then we say that there is no reserve area If b is
non-nul l. there is a reserve area even it eb is less than band so the reserve area
has zero length.

sb->se tp(p , ep)

Sets pptr () to p phase () to p and epptr () to ep.

sb->setg (eb , g , eg)

Sets eback () to eb, gptr () to g. and egptr () to eg.

227

streambuf - protected

---"" """'---- WM:Ih ~111;,.:---•:J•-Illll-ll!l-*tlllllil111113111t11111E*_,.*II:::•11111311WE:IIIF1111t1114131¥1ii:illliillli:liPr:::i8ICII*O*IOII8:::lii•I:IR-ROIII"'Il*-M:::liiWII:l1"111!;WWill-'*ll""'lll!;'""---ltli"'IIUIII:------=.!-i

228

Other non-virtual members

i=sb->allocate()

Tries to set up a reserve area. If a reserve area already exists or if
sb->unbuffered() is non-zero. allocate() returns 0 without doing
anyth ing. If the attempt to allocate space fails. allocate() returns EOF.

otherwise (i .e allocation succeeds) allocate () returns I. allocate () is not
ca lled by any non-virtual member function of streambuf.

i =sb->blen ()

Returns the size (in chars) of the current reserve area.

dbp()

Writes directly on file descriptor I information in ASCI I about the state of the
buffer. It is intended for debugging and nothing is specified about the form of the
output It is considered part of the protected interface because the information it
prints can only be understood in relation to that interface. but it is a public
function so that it can be ca lled anywhere during debugging.

sb->gbump(n)

Increments gptr () by n which may be positive or negative. No checks are made
on whether the new value of gptr () is in bounds.

sb->pbump(n)

Increments pptr () by n which may be positive or negative. No checks are made
on whether the new va lue of pptr () is in bounds.

sb->unbuffered(i)
i=sb->unbuffered()

There is a private variable known as sb's buffering state. sb->unbuffered (i)

sets the value of this variable to i and sb->unbuffered() returns the current
value. This state is independent of the actual al location of a reserve area. Its
primary purpose is to control whether a reserve area is allocated automatica lly by
allocate.

The Streams library

Virtual member functions

Virtual functions may be redefined in derived classes to specialise the behaviour of
streambufs. This section describes the behaviour that these virtua l functions
should have in any derived classes: the next section describes the behaviour that
these functions arc defined to have in base class streambu f.

i=sb->doallocate()

Is called when allocate () determines that space is needed deallocate () is
requ1red to call setb () to provide a reserve area or to return EOF 1f 1t cannot It 1s
only ca lled 1f sb->unbuf f ered() is zero and sb->base() 1s zero .

i=overflow(c)

Is ca lled to consume characters. If cis not EOF. overflow() also must either
save c or consume it . Usual ly it is ca l led when the put area is ful l and an il ttcmpt is
being made to store a new character. but it can be ca lled at other times The
normal action is to consume the characters between pbase () and pptr () cal l
setp () to establish a new put area and if c! =EOF store it (using sputc ())
sb->overf low () should return EOF to 1nd1cate an error. otherwise 1t should
return something else

i =sb->pbackfail(c)

Is called when eback () equa ls gptr () and an attempt has been mad<' to
putback c . II this silua lion can be dealt wilh (e.g. by reposi tioning an ex ternal file).
pbackfail () should return c ; otherwise it should return EOF.

pos=sb->seekoff(off, dir , mode)

Repositions the get and/or put pointers (i e the abstract get and put pointers. not
pptr () and gptr ()). The meanings of off and dir are discussed 1n slreambuf­
public on page 2'32 mode specifies whether the put pointer (ios : :out bit set) or
the get po1nter (ios: : in bit set) is to be modified. Both bits may be set 1n which
case both pointers should be affected A class derived from streambuf is not
required to support repositioning. seekoff () should return EOF if the class does
not support repositioning. If the class does support reposit ion ing, seekoff ()
should return the new position or EOF on error.

pos=sb->seekpos(pos, mode)

Repositions the streambuf get and/or put pointer to pos mode spec1fies which
pointers are affected as for seekoff () Returns pos (the argument 1 or EOF if the
class does not support repositioning or an error occurs

229

streambuf - protected

230

sb=sb->setbuf(ptr, len)

Offers the array at ptr with len bytes to be used as a reserve area. The normal
interpretation is that if ptr or len are zero then this is a request to make the sb
unbuffered. The derived class may use this area or not as it chooses. It may accept
or ignore the request for unbuffered state as it chooses . setbuf () shou ld return
sb if it honours the request Otherwise it should return 0.

i=s b->sync()

Is cal led to give the derived class a chance to look at the state of the areas, and
synchronise them with any external representation. Normally sync () should
consume any characters that have been stored into the put area, and if possible
give back to the source any characters in the get area that have not been fetched
When sync () returns there should not be any unconsumed characters. and the
get area should be empty sync () should return EOF if some kind of fai lure
occurs.

i=sb->underflow()

Is cal led to supply characters for fetching, i.e. to create a condition in which the get
area is not empty. If it is ca l led when there are characters in the get area it shou ld
return the first character. If the get area is empty. it should create a non-empty get
area and return the next character (which it shou ld also leave in the get area) If
there are no more characters available, underflow() should return EOF and
leave an empty get area.

The default definitions of the virtua l functions

i =sb->streambuf::doallocate()

Attempts to allocate a reserve area using operator new.

i =sb->streambuf : :overflow(c)

streambuf: :over£ low () should be treated as if it had undefined behaviour.
That is, derived classes should always define it

i =sb->streambuf :: pbackfail (c)

Returns EOF.

pos=sb->streambuf::seekpos(pos, mode)

Returns sb->seekoff (streamoff (pos), ios:: beg ,mode) . Thus to define
seeking in a derived class, it is frequently only necessary to define seekoff ()and
use the inherited streambuf : : seekpos () .

. -

See also

The Streams library

---·-···· ···------.
pos=sb- >streambuf: : s e ekoff(off , dir, mode)

Returns EOF.

sb=sb->streambuf : :setbuf(ptr, len)

Will honour the request when lhere is no reserve area.

i =sb ->streambuf:: s ync ()

Returns 0 if the get area is empty and there are no unconsumed characters.
Otherwise it returns EOF.

i =sb->streambuf::underflow()

Is compatible with the o ld stream package, but that behaviour is not considered
part of the specification of the iostream package. Therefore.
streambuf: : underflow () should be treated as if il had undefined behaviour
That is. il should always be defined in derived classes.

streambuf - public (page 232). ios (page 195). islream (page 206). ostream {page 217)

231

streambuf - public

Synopsis

Description

232

•.•........• .

streambuf - public

streambuf- public interface of character buffering class

#include <iostream.h>

typedef long streamoff, streampos;
class ios {
public:

enum seek_dir { beg, cur, end };
enum open_mode { in, out, ate, app, trunc, nocreate, noreplace }
II and lots of other stuff; see ios on page 195

} ;

class streambuf
public

};

int
int
int
streambuf*
streampos
streampos
int
int
int
int
int
int
void
virtual int

in_avail ();
out_,•aiting();
sbumpc();
setbuf(char* ptr, int len);
seekpos(streampos, int =ios: :in Jios : :out);
seekoff(streamoff, seek_dir, int =ios: : in Jios : :out);
sgetc();
sgetn(char* ptr, int n);
snextc();
sputbackc(char);
sputc(int c);
sputn(const char* s , int n);
stossc();
sync();

The streambuf class supports buffers into which characters can be inserted (putJ
or from which characters can be fetched (got) . Abstractly, such a buffer is a
sequence of characters together with one or two pointers (a get and/or a put
pointer) that define the location at wh ich characters arc lobe inserted or fetched .
The pointers shou ld be thought of as pointing between characters rather than at
them. This makes il easier to understand the boundary cond itions (a pointer
before the first character or after the last) Some of the effects of gelting and
putting are defined by th is class but most of the details are left to specia lised
classes derived from s treambuf. (See fi/ebuf on page I S7. strslreambuf on page 240,
and stdiobuf on page 223.)

The Streams library

Classes derived from streambuf vary in their treatments of the get and put
pointers The simplest are unidirectional buffers which permit only gets or only
puts. Such classes serve as pure sources (producers) or sinks (consumers) of
characters. Queue like buffers (e.g. see strstream on page 237 and strslreaml?uf on
page 240) have a put and a get pointer which move independently of each other. In
such buffers characters that are stored are held (i.e. queued) until they are later
fetched Filelike buffers (e.g. filebuf. see filebuf on page 187) permit both gets
and puts but have only a single pointer (An alternative description is that the get
and put pointers are tied together so that when one moves so does the other)

Most streambuf member functions are o rgan ised into two phases. As fa r as
possible, operations are performed inline by storing into or fetch ing from arrays
(the get area and the put arra, which together form the reserve area. or b~!/ferl From
time to time. virtual functions are ca lled to deal with collections of characters in
the get and put areas. That is. the virtual functions are called to fetch more
characters from the ultimate producer or to flush a collection of characters to the
ultimate consumer. Generally the user of a streambuf does not have to know
anything about these detai Is. but some of the public members pass back
information about the state of the areas. Further detai l about these areas is
provided in streambuf- protected on page 224. which describes the protected
interface.

The public member functions of the streambuf class are described below. In the
following descriptions assume:

• i. n. and len are ints.

• cis an int. It always holds a 'character' value or EOF. A 'character' va lue is
always positive even when char is normally sign extended.

• sb and sbl are streambuf*s.

• ptr is a char* .

• off is a streamoff.

• pos is a streampos.

• dir is a seek dir.

• mode is an int representing an open_mode.

233

stream but - public

234

.,

Publ ic member functions:

i =sb->in_ avail()

Returns the number of characters that are immediately available in the get area for
fetching. i characters may be fetched with a guarantee that no errors will be
reported

i=sb->out_waiting()

Returns the number of characters in the put area that have not been consumed (by
the ultimate consumer.

c =sb->sbumpc()

Moves the get pointer forward one character and returns the character it moved
past. Returns EOF if the get poinler is currently at the end of the sequence

pos=sb->seekoff(off, dir, mode)

Repositions the get and/or put pointers mode specifies whether the put pointer
(i os : :out bit set) or the get pointer (i os :: i n bit set) is to be modified. Both
bits may be set in which case both pointers shou ld be affected off is interpreted
as a byte offset. (Notice that it is a signed quantity.) The meanings of possible
values of dir are

ios : : beg

ios : : cur

ios : : end

The beginn ing of the stream.

The current position.

The end of lhe stream [end of file.)

Not all classes derived from streambuf support repositioning. seekoff () will
return EOF if the class does not support repositioning. If the class does support
repositioning, seekoff () wi ll return the new position or EOF on error.

pos=sb->seekpos(pos, mode)

Repositions the str eambuf get and/or put pointer to pos. mode specifies which
pointers are affected as for seekoff () . Returns pos (the argument) or EOF if the
class does not support repositioning or an error occurs . In general a streampos
should be treated as a ·magic cookie' and no arithmetic should be performed on it.
Two particular values have special meaning:

streampos(O)

streampos(EOF)

The beginning of the file.

Used as an error indication.

The Streams library

c=sb->sgetc()

Returns the character after the get pointer. Contrary to what most people expect
from the name it does not move the get pointer. Returns EOF if there is no
character avai lable.

sbl=sb->setbuf(ptr, len, i)

Offers the len bytes starting at ptr as the reserve area. If ptr is nul l or len is
zero o r less, t hen an unbuffered state is requested Whether the offered area is
used. or a request for unbuffered state is honoured depends on details o f the
derived class. setbuf () normal ly returns sb. but if it does not accept the offer o r
honour the request. i t retu rns 0.

i=sb->sgetn(ptr, n)

Fetches the n cha racters following the get pointer and copies them to the area
starting at ptr. When there are fewer than n characters left before the end of the
sequence sgetn () fetches whatever characters remain. sgetn () reposilions the
get poin ter following the fetched characters and returns the number of characters
fetched

c=sb->snextc()

Moves the get pointer forward one character and returns the character follow ing
the new position . It retu rn s EOF if the pointer is currently at the end of the
sequence or is at the end of the sequence after moving forward.

i=sb->sputbackc(c)

Moves the get poin ter back one character. c must be the current content of the
sequence just before the get pointer. The underlying mechan ism may simply back
up the get pointer o r may rearrange its internal data structures so the cis saved.
Thus the effect of sputbackc () is undefined if cis not the character before the
get pointer. sputbackc () returns EOF when it fails The conditions under which
i t ca n fail depend on the detai ls of t he derived class.

i=sb->sputc(c)

Stores c after the put pointer, and moves the put pointer past the stored cha racter;
usually this extends the sequence. It returns EOF when an error occurs. The
conditions that ca n cause errors depend on the derived class.

i=sb->sputn(ptr, n)

Stores the n characters sta rt ing at ptr after the put pointer and moves the put
pointer past them. sputn () returns i. the number o f characters stored
successfully. Normally i is n. but it may be less when errors occur.

235

streambuf - public

See also

sb->stossc()

Moves the get pointer forward one character. If the pointer started at the end o f the
sequence this funct ion has no effect.

i =sb->sync()

Establishes consistency between the internal data structures and the external
source or sink. The details of this function depend on the derived class. Usually
this ·flushes· any characters that have been stored but not yet consumed. and
'g1ves back' any characters that may have been produced but not yet fetched .
sync () returns EOF to indicate errors

ios (page 195). istream (page ~06). ostream (page 217). streambuf- protected (puge ~24 1

The Streams library

---------~-IDII&I!l!I!!!IIUI•II:'•IIU--Q* .. *IIl"Kli-113Miill:ltAiil'W£_..,,&.tf•• !Jt• Mwwa;;;;::;._.

Synopsis

Description

strstream- iostream specialised to arrays

#include <strstream.h>

class ios {
public:

strstream

enum open_ mode { in, out, ate, app, trunc , nocreate, noreplace }
II and lots of other stuff; see ios on page 195

} ;

class istrstream public istream {
public:

strstreambuf•
} ;

istrstream(char•)
istrstream(char•, int)
rdbuf();

class ostrstream public ostream {
public:

} ;

int
strstreambuf*
char•

ostrstream();
ostrstream(char•, int, int=ios ::out)
pcount() ;
rdbuf ()
str();

class strstream public strstreambase, public iostream {
public:

} ;

strstreambuf•
char•

strstream();
strstream(char*, int, int mode);
rdbuf()
str();

strstream specialises iostream for 'incore· operations, that is. storing and
fetching from arrays of bytes. The streambuf associated with a strstream is a
strstreambuf (see strstreambuf on page 240).

In the following descriptions assume:

• ss is a strstream.

• iss is an istrstream.

• ossisanostrstream.

237

strstream

....__38888l"'8888!'...,...""""""''"i;;:O;:;;:===::;:====:'::IIill:ill ... lib.iiiiii!O:lil-liS·~-I'IIJDI!W-- rli!Air.M...,..MIIiJ+IIII:JIMt:IMIOIM:liiW1!311! 11111!0i...,.. ... lilllll:l ___ lllilll"""llll"""llll """llll"""llll"""llll-

238

• cp is a char* .

• mode is an int representing an open_mode.

• i and len are ints.

• ssb is a strstreambuf*.

Constructors

istrstream(cp)

Characters will be fetched from the (null-terminated) string cp. The terminating
null character will not be part of the sequence. Seeks (istream : :see kg ())are
al lowed within that space.

istrstream(cp, len)

Characters will be fetched from the array beginning at cp and extending for len
bytes. Seeks (istream: :see kg ())are allowed anywhere within that array.

ostrstream()

Space will be dynamically allocated to hold stored characters .

ostrstream(cp,n,mode)

Characters will be stored into the array starting at cp and continuing for n bytes. If
ios :: ate or ios:: app is set in mode. cp is assumed to be a null-terminated
string and storing will begin at the null character. Otherwise storing will begin at
cp. Seeks are allowed anywhere in the array.

strstream()

Space will be dynamically allocated to hold stored characters.

strstream(cp,n,mode)

Characters will be stored into the array starting at cp and continuing for n bytes. If
ios:: ate or ios:: app is set in mode. cp is assumed to be a null-terminated
string and storing will begin at the null character. Otherwise storing will begin at
cp. Seeks are allowed anywhere in the array.

istrstream members

ssb = iss.rdbuf()

Returns the strstreambuf associated with iss.

See also

The Streams library

ostrstream members

ssb = oss.rdbuf()

Returns the strstreambuf associated with oss.

cp=oss. str ()

Returns a pointer to the array being used and ·freezes' the array. Once str has
been ca lled the effect of storing more characters into oss is undefined. If oss was
constructed with an explicit array, cp is just a pointer to the array. Otherwise. cp
points to a dynamical ly allocated area. Unti l str is called, deleting the
dynamically allocated area is the responsibi I ity of oss. After str returns. the array
becomes the responsibility of the user program.

i=oss.pcount()

Returns the number of bytes that have been stored into the buffer This is mainly of
use when binary data has been stored and oss. str () does not point to a null
terminated string.

strstream members

ssb = ss.rdbuf()

Returns the strstreambuf associated with ss.

cp=ss. str ()

Returns a pointer to the array being used and ·freezes· the array. Once str has
been called the effecl of storing more characters into ss is undefined. If ss was
constructed with an explicit array, cp is just a pointer to the array. Otherwise, cp
points to a dynamical ly allocated area. Until str is called, deleting the
dynamically allocated area is the responsibility of ss. After str returns, the array
becomes the responsibility of the user program

slrstreambuf (page 240), ios (page 195). islream (page 206). ostream (page 217)

?~Q

strstreambuf

1111

Synopsis

Description

?4 0

strstreambuf- streambuf specialised to arrays

#include <iostream.h>
#include <strstream.h>

class strstreambuf : public strearnbuf
public:

strstreambuf() ;
strstrearnbuf(char*, int, char*);
strstrearnbuf(int);

strstreambuf

strstrearnbuf(unsigned char*, int, unsigned char*);
strstrearnbuf(void* (*a)(long), void(*f)(void*));

void freeze(int n=l) ;
char* str();
virtual strearnbuf* setbuf(char•, int)

);

A strstreambuf is a streambuf that uses an array of bytes (a string) to hold
the sequence of characters. Given the convention that a char* should be
interpreted as pointing just before the char it really points at. the mapping
between the abstract get/put pointers (sec strearnbuf- public on page 232) and
char* pointers is direct. Moving the pointers corresponds exactly to incrementing
and decrementing the char* values.

To accommodate the need for arbitrary length strings strstreambuf supports a
dynamic mode. When a strstreambuf is in dynamic mode. space for the
character sequence is allocated as needed. When the sequence is extended too far.
it will be copied to a new array.

In the following descriptions assume:

• ssb is a strstreambuf* .

• n is an int.

• ptr and pstart are char*s or unsigned char*s.

• aisavoid* (*)(long) .

• fisavoid* (*)(void*).

The Streams library

Constructors

strstreambuf ()

Constructs an empty strstreambuf in dynamic mode. This means that space
will be automatica lly allocated to accommodate the characters that are put into
the strstreambuf (using operators new and delete). Because this may require
copying the original characters. it is recommended that when many characters will
be inserted, the program should use setbuf () (described below) to inform the
strstreambuf.

strstreambuf(a, f)

Constructs an empty strstreambuf in dynamic mode. a is used as the allocator
function in dynamic mode. The argument passed to a will be a long denoting the
number of bytes to be allocated. If a is null. operator new will be used. f is used to
free (or delete) areas returned by a . The argument to fwi II be a pointer to the array
al located by a. Iff is null. operator delete is used.

strstreambuf(n)

Constructs an empty strstreambuf in dynamic mode. The initial allocation of
space will be at least n bytes.

strstreambuf(ptr, n, pstart)

Constructs a strstreambuf to use the bytes starting at ptr. The
strstreambuf will be in static mode; it will not grow dynamically. If n is positive.
then then bytes starting at ptr are used as the strstreambuf. If n is zero. ptr
is assumed to point to the beginning of a null terminated string and the bytes of
that string (not including the terminating null character) will constitute the
strstreambuf. If n is negative, the strstreambuf is assumed to continue
indefinitely. The get pointer is initialised to ptr. The put pointer is initialised to
pstart. If pstart is null, then stores will be treated as errors. If pstart is
non-null. then the initi al sequence for fetching (the get area) consists of the bytes
between ptr and pstart. If pstart is null. then the initial get area consists of
the entire array

?LI.1

strstreambuf

See also

?4?

Member functions

ssb->freeze(n)

Inh ibits (when n is non-zero) or permits (when n is zero) automalic deletion of the
current array. Deletion normally occurs when more space is needed or when ssb is
being destroyed. Only space obtained via dynamic allocation is ever freed It is an
error (and the effect is undefined) to store characters into a strstreambuf that
was in dynamic allocation mode and is now frozen It is possible however. to thaw
(unfreeze) such a strstreambuf and resume storing characters

ptr=ssb->str()

Returns a pointer to the first char of the cu rrent array and freezes ssb If ssb was
constructed wilh an explicit array, ptr wi ll point to that array. If ssb is in dynamic
allocation mode. but nothing has yet been stored. ptr may be nu ll

ssb->setbuf(O,n)

ssb remembers nand the next time it does a dynamic mode allocation. it makes
sure that at least n bytes are allocated

streambuf- public (page 232). strstream (page 237)

15 The Complex Math library

T he Complex Math library is a part of the C++ library. ported from that supplied
with AT& T's CFront product

243

Introduction

Synopsis

Description

Diagnostics

See also

244

complex- introduction to C++ complex mathematics library

#include <complex.h>
class complex;

Introduction

This section describes comp lex mathematics functions and operators found in the
C++ Library.

The Complex Mathematics library implements the data type of complex numbers
as a class. complex. It overloads the standard input. output. arithmetic.
assignment. and comparison operators. discussed in comp/Px opprators on page 252.
It also overloads the standard exponential. logari thm. power. and square root
functions. discussed in exp. log, pow. sqrl on page 250. and the trigonometric
functions of sine. cosine. hyperbolic sine. and hyperbol ic cosine. discussed in
cplxlrig on page 255. for the class complex Routines for converting between
Cartesian and polar coordinate systems are discussed in carlt'Sian/polaron page 245.
Error handling is descri bed in complex_erroron page 247

Functions in the Complex Mathematics Library may return the conventional values
(01 0) (0 1 ±HUGE) . (±HUGE 1 0) . or (±HUGE 1 ±HUGE). when the function
l 'i undefined for the given arguments or when the value is not representable. (HUGE

is the largest-magnitude single-precis ion noating-point number and is defined in
the file <math .h>. The header file <math.h> is included in the file
<complex . h> l In these cases. the external variable errno is set to the value
EDOM or ERANGE.

cartesian/polar (page 245). complex_error (page 247). complex oprrators (page 252). exp,
loa. pow. sqrt (page 250). cplxtrig (page 255).

Synopsis

Description

The Complex Math library

cartesian/polar

cartesion/polar- functions for the C++ Complex Math Library

#include <complex .h>

class complex

public:

friend double abs(complex);
friend double arg(complex);
friend complex conj(complex);
friend double imag(complex);
friend double norm(complex);
friend complex polar(double, double .. 0);

friend double real (complex) ;

} ;

The following functions are defined for complex. where.

• d. m. and a arc of type int

• x andy are of type complex.

d = abs(x)

Returns the absolute value or magnitude of x

d = norm(x)

Returns the squdre of the magnitude of x It is faster than abs. but more likely Lo
cause an overflow error It is intended for comparison of magnitudes.

d = a r g (x)

Returns the angle of x. measured in rodians in the range -n: ton:

y = conj(x)

Returns the complex conjugate of x That is. if x is (real, imag) then
conj(x) is (real, -imag) .

245

cartesian/polar

See also

246

...
y = polar(m, a)

Creates a complex given a pair of polar coord inates. magnitude m, and angle a.
measured in radians.

d = real(x)

Returns the real part of x.

d = imag(x)

Returns the imaginary part of x.

Introduction (page 244). cornplex_error (page 247). complex operators (page 252). exp, log,
pow. sqrt (page 250). cplxtrig (page 255)

Synopsis

Description

The Complex Math library

complex error

complex_error- error-handling function for the C++ Complex Math Library

#include <complex .h>

class c_exception

public:

} ;

int
char
complex
complex
complex

type;
*name;
argl;
arg2;
retval;

c_exception(char *n, const complex& al,
const complex& a2 = complex_zero);

friend int complex_error(c exception&);

friend complex exp(complex);
friend complex sinh(complex);
friend complex cosh(complex);
friend complex log(complex);

In the following description of the complex error handling routine

• i is of type int

• xis of type c_ exception.

i = complex_error(x)

Invoked by functions in the C++ Complex Mathematics Library when errors are
detected.

Users may define their own procedures for hand ling errors. by defining a function
named complex_ error in their programs. complex_error must be of the
form described above.

247

complex_ error

248

The element type is an integer describing the type of error that has occurred, from
the following list of constants (defined in the header file)

SING argument singularity
OVERFLOW overflow range error
UNDERFLOW underflow range error

The element name points to a string containing the name of the function that
incurred the error. The variables argl and arg2 are the arguments with wh ich the
function was invoked. ret val is set to the default va lue that will be returned by
the function unless the user's complex_error sets it to a different value.

If the user"s complex_error funct ion returns non-zero. no error message wi ll be
printed. and errno will not be set.

If complex_ error is not supplied by the user, the default error-handling
procedures, described with the complex math functions involved. will be invoked
upon error. These procedures are also summarised in the table below. In every
case, errno is set to EDOM or ERANGE and the program continues.

Note that complex math functions call functions included in the math library
which has its own error handling routine. matherr. Users may also override th is
routine by supplying their own version .

Default error handling procedures
.""""

J Types of Errors

type SING OVERFLOW

errno EDOM ERANGE

real too large/small - (:tH, :tH)
EXP t--

imag too large - (0, 0)
t-

LOG arg = (0, 0) M, (H, 0) -
- -

SINH

COSH

Key:

real too large (:tH, :tH)

imag too large - (0, O)
- 1-

real too large - (:tH, :tH)

imag too large - (0, 0)

M
\H. 0)

(±H. ±H)

(0, 0)

Message is printed (EDOM error)
(HUGE 1 0) is returned
(±HUGE, ±HUGE) is returned
(0 1 0) is returned

-

UNDERFLOW
-

ERANGE

(0, 0)

-

-

-
-

-

-

-

See also

The Complex Math library

Introduction (page 244). cartesian/polar (page 245). complex operators (page 252).1'xp. log.
pow. sqrl (page 250). cp/xtrig (page 255)

249

exp, log, pow, sqrt

Synopsis

Description

250

exp, log, pow, sqrt

exp, log, pow, sqrt- exponential, logarithm, power, square root functions for the
C++ complex library

#include <complex.h>

class complex {

public:

} ;

friend complex exp(complex);
friend complex log(complex);
friend complex pow(double, complex);
friend complex pow(complex, int);
friend complex pow(complex, double);
friend complex pow(complex, complex);
friend complex sqrt(complex);

The following math functions are overloaded by the complex library, where:

• x, y, and z are of type complex.

z = exp(x)

Returns ex

z = log(x)

Returns the natural logarithm of x.

z = pow(x, y)

Returns xY

z = s qrt(x)

Returns the square root of x, contained in the first or fourth quadrants of the
complex plane

Diagnostics

See also

The Complex Math library

exp returns (0 I 0) when the real part of xis so small, or the imaginary part is so
large, as to cause overflow. When the real part is large enough to cause overflow.
exp returns (HUGE 1 HUGE) if the cosine and sine of the imaginary part of x are
positive, (HUGE 1 -HUGE) if the cosine is positive and the sine is not. (-HUGE 1

HUGE) if the sine is positive and the cosine is not. and (-HUGE 1 -HUGE) if
neither sine nor cosine is positive. In all these cases, errno is set to ERANGE.

log returns (-HUGE 1 0) and sets errno to EDOM when xis (0 1 0) . A message
indicating SING error is printed on the standard error output.

These error-handling procedures may be changed with the function
complex_error (see page 247)

Introduction (page 244). cartesiarr/polar (page 245). complex_error (page 247). complex
operators (page 252). cplxtriq (page 255)

2fi1

complex operators

== -· -------·

Synopsis

Description

•••

complex operators

complex_operators: operators for the C++ complex math I ibrary

#include <complex .h>

class complex {

public:

};

friend complex
friend complex
friend complex
friend complex
friend complex

friend int
friend int

void
void
void
void

operator+(complex, complex);
operator-(complex);
operator-(complex, complex);
operator*(complex, complex);
operator/(complex, complex);

operator==(complex, complex);
operator!=(complex, complex);

operator+=(complex);
operator-=(complex);
operator*=(complex);
operator/=(complex);

The basic arithmetic operators, comparison operators, and assignment operators
are overloaded for complex numbers. The operators have their conventional
precedences In the following descriptions for complex operators

• x , y, and z are of type complex.

Arithmetic operators:

?F\?

Z = X + y

Returns a complex which is the arithmetic sum of complex numbers x andy.

z = -x

Returns a complex which is the arithmetic negation of complex number x .

Z = X - y

Returns a complex which is the arithmetic d ifference of complex numbers x and
y.

The Complex Math library

Z = X * y

Retu rns a complex which is the arithmetic product of complex numbers x andy.

z = X I y

Returns a complex which is the ari thmetic quotient of complex numbers x andy.

Comparison operators

X == y

Returns non-zero if complex number xi s equal to complex number y : returns 0
otherwise.

X != y

Returns non-zero if complex number xi s not equa l to complex number y: returns
0 otherwise.

Assignment operators

X += y

Complex number xis ass igned the value of the arithmetic sum of itself and
complex number y.

X -= y

Complex number xis assigned the value of the arithmetic difference of itself and
complex number y.

X *= y

Complex number xis assigned the value of the arithmetic product of itself and
complex number y.

X I= y

Complex number xis assigned the va lue o f the arithmetic quotient of itself and
complex number y.

253

complex operators

Warning

See also

254

The assignment operators do not produce a value that can be used in an
expression. That is. the following construction is syntactica lly invalid

complex x, y, z;
X = (y += z);

whereas:

X = y + z);

X = (y ::l:l:: z);

are valid.

Introduction (page 244). cartesian/polar (page 245), complex_error (page 247). exp. log.
pow. sqrt (page 250), cplxtrig (page 255)

Synopsis

Description

Diagnostics

The Complex Math library

cplxtrig

cplxtrig - trigonometric and hyperbolic functions for the C++ complex library

#include <complex.h>

class complex {

public:

} ;

friend complexsin(complex);
friend complexcos(complex);

friend complexsinh(complex);
friend complexcosh(complex);

The following trigonometric functions are defined for complex. where:

• x andy are of type complex.

y = sin(x)

Returns the sine of x .

y = cos(x)

Returns the cosine of x .

y = sinh(x)

Returns the hyperbolic sine of x .

y = cosh(x)

Returns the hyperbolic cosine of x .

If the imaginary part of x would ca use overflow sinh and cosh return (0, 0) .
When the real part is large enough to cause overflow. sinh and cosh return
(HUGE, HUGE) if the cosine and sine of the imaginary part of x are non-negative,
(HUGE, -HUGE) if the cosine is non-negative and the sine is less than 0.

255

cplxtrig

See also

256

(-HUGE, HUGE) if t he sine is non-negative and the cosine is less than 0, and
(-HUGE, -HUGE) if both sine and cosine are less than 0. In al l these cases.
errno is set to ERANGE.

These error-handling procedures may be changed with t he function
complex_ error (see page 247)

Introduction (page 244), cartesian/polar (page 245). cornplex_error (page 247). complex
operators (page 252), exp. log , pow, sqrt (page 250)

Part 4- Developing software for RISC OS

257

258

16
-

Portability

T he C programming language has gained a reputation for being portable across
mach ines. while still providing capabilities at a machine-specific level. The fact

that a program is written inC by no means indicates the effort required to port
software from one machine to another. or indeed from one compiler to another.
Obviously the most time-consuming task is porting between two entirely different
hardware environments. running different operating systems with different
compilers Since many users of the Acorn C compiler will find themselves in this
situation. this chapter deals with a number of issues you should be aware of when
porting software to or from our environment. The chapter covers the following:

• genera l portability considerations

• major differences between ANSI C and the well-known 'K&R' Cas defined in
the book The C Programming Language, (first edition) by Kernighan and Ritchie

• using the Acorn C compiler in ·pee· compatibility mode

• environmental aspects of portability.

General portability considerations

If you inlend your code to be used on a variety of different systems. there are
certain aspects which you should bear in mind in order to make porting an easy
and relatively error-free process. It is essential to single out items which may make
software system-specific. and to employ techniques to avoid non-portable use of
such items. In this section. we describe general portabil ity issues for C programs.

Fundamental data types

The size of fundamental data types such as char, int. long int. short int
and float will depend mainly on the underlying architecture of the machine on
which the C program is to run. Compi ler writers usually implement these types in a
manner which best fits the architectures of machines for which their compilers are
targeted. For example. Release 5 of the Microsoft C Compiler has int. short
int and long int occupying 2. 2 and 4 bytes respectively, where the Acorn C
Compi ler uses 4. 2 and 4 bytes. Certain relations are guaranteed by the ANSI C
Standard (such as the fact that the size of long int is at least that of short
int). but code which makes any assumptions regarding implementation-defined
issues such as whether int and long int are the same size will not be
maximally portable.

259

General portability considerations

'&:li:l':lllli-.::.W:.-.\\'I:.&'~;/IC.III:-11111-----~-------II!l·-m-IIIII _________ WI:II_&al __ lil*llll*llil-IIID*

260

A common non-portable assumption is embedded in the use of hexadecimal
constant values. For example:

int i;
i = i & Oxfffffff8; /* set bottom 3 bits to zero, assuming 32-bit int */

Such non-portability can be avoided by using:

int i;
i = i & -Ox07; I* set bottom 3 bits to zero, whatever sizeof(int) */

If you find that some size assumptions are inevitable, then at least use a series of
assert calls when the program starts up, to indicate any conditions under which
successful operation is not guaranteed. Alternatively, write macros for
frequently-used operations so that size assumptions are localised and can be
altered locally.

Byte ordering

A highly non-portable feature of many C programs is the implicit or explicit
exploitation of byte ordering within a word of store. Such assumptions tend to
arise when copying objects word by word (rather than byte by byte). when inputting
and outputting binary values. and when extracting bytes from or inserting bytes
into words using a mix of shift-and-mask and byte addressing A contrived example
is the following code which copies individual bytes from an int variable w into an
int variable pointed to by p, until a null byte is encountered. The code assumes
that w does contain a null byte.

int a;
char *p = (char *)&a;
int w = AN_ARBITRARY_VALUE;

for (;;)
{

}

if ((*p++
w >>= 8;

w) 0) break;

This code will only work on a machine with even (or little-endian) byte-sex. and so
is not portable. The best solution to such problems is either to write code which
does not rely on byte-sex. or to have different code to deal appropriately with
different byte-sex and to compile the correct variant conditionally, depending on
your target machine architecture.

Portability

== = m•a•t

Store alignment

The on ly guarantee given in the ANSI C Standard regarding alignment of members
of a struct. is that a 'hole' (ca used by padding) cannot exist at the beginning of
the struct. The va lues of 'holes' created by alignment restrictions are undefined.
and you should not make assumptions about these va lues. In particular. two
structu res with identica l members. each having identical values, will only be
considered equal if field-by-field comparison is used; a byte-by-byte. or
word-by-word comparison may not indicate equality.

This may also have implicalions on the size requirements of large arrays of
structs. Given the following declarations

#define ARRSIZE 10000
typedef struct

{
int i;
short s;

} ELEM;
ELEM arr[ARRSIZE);

this may require significantly different amounts of store under. say, a compi ler
which aligns ints on even boundaries. as opposed to one which al igns them on
word boundaries.

Pointers and pointer arithmetic

A deficiency of the original definition of C. and of its subsequent use. has been the
relatively unrestrained interchanging between pointers to different data types and
integers or longs. Much existing code makes the assumption that a pointer can
safely be held in either a long int or int variable. While such an assumption
may indeed be true in many implementations on many machines. it is a high ly
non-portable feature on which to rely.

This problem is further compounded when taking the difference of two pointers by
performing a subtraction. When the difference is large, this approach is full of
possible errors. For this purpose. ANSI C defines a type ptrdiff_t, which is
capable o f rel iably storing the resu lt of subtracting two pointer values of the same
type; a typica l use of this mechanism would be to apply it to pointers into the same
array.

261

ANSI C vs K&R C

Function argument evaluation

Whilst the eva luation of operands to such operators as && and II is defined to be
strictly left-to-right (including all side-effects). the same does not apply to function
argument evaluation. For example. in the function call f (i, i ++) ; . the issue of
whether the post-increment of i is performed after the first use of i is
implementation-dependent In any case. this is an unwise form of statement. since
it may be decided later to implement f as a macro. instead of a function.

System-specific code
The direct use of operating system calls is, as you wou ld expect. non-portable If
you use code which is obviously targeted for a particular environment, then it
should be clearly documented as such, and should preferably be isolated into a
system-specific module. which needs to be modified when porting to a new
machine or operating system. Path names of system files should be #defined and
not hard-coded into the program, and, as far as possible, all processing of
filenames should be made easy to modify. Many file operations can be written in
terms of the ANSI input/output library functions, which will make an application
more portable Obviously, binary data files are inherently non-portable, and the
on ly solution to this problem may be the use of some portable external
representation.

ANSI C vs K&R C

262

The ANSI C Standard has succeeded in tightening up many of the vague areas of
K&R C. This results in a much clearer definition of a correct C program However. if
programs have been written to exploit particular vague features of K&R C. then
their authors may find surprises when porting to an ANSI C environmenl. In the
following sections. we present a list of what we consider to be the major
differences between ANSI and K&R C. These differences are at the language level,
and we defer discussion of library differences until a later section. The order in
which this list is presented follows approximately relevant parts of the ANSI C
Standard Document.

Lexical elements

The ordering of phases of translation is well-defined . Of special note is the
preprocessor which is conceptually token-based (which does not yield the same
results as might naively be expected from pure text manipulation) .

Portability

---- --- ····--··
A number of new keywords have been introduced with the following meanings

• The type qualifier volatile which means that the object may be modified in
ways unknown to the implementation. or have other unknown side effects.
Examples of objects correctly described as volatile include device
registers. semaphores and flags shared with asynchronous signal handlers. In
general. expressions invo lving volatile objects cannot be optimised by the
compiler

• The type qualifier const which ind icates that a variable's value should not be
changed.

• The type specifier void to indicate a non-existent value for an expression.

• The type specifier void *.which is a generic pointer to or from which pointer
variables can be assigned. without loss of information.

• The signed type qualifier. to sign any integral types expl icit ly.

• structs and unions have their own distinct name spaces.

• There is a new floating-point type long double.

• The K&R C practice of using long float to denote double is now outlawed
in ANSI C.

• Suffixes U and L (or u and 1), can be used to expl icitly denote unsigned and
long constants (eg. 32L, 64U, 1024UL etc).

• The use of 'octa l' constants 8 and 9 (previously defined to be octal I 0 and II
respectively) is no longer supported

• Literal strings are to be considered as read-only, and identica l strings may be
stored as one shared version (as indeed they are. in the Acorn C Compiler). For
example, given

char *pl = "hello";
char *p2 = "hello";

pl and p2 will point at the same store location. where the string hello is
held. Programs should not therefore modify litera l strings.

• Variadic functions (ie those which take a variable number of arguments) are
declared explicitly using an ellipsis(...) For example, int printf (const
char *fmt, •••) ;

• Empty comments I**/ are replaced by a single space (use the preprocessor
directive## to do token -pasting if you previously used/**/ to do this).

263

ANSI C vs K&R C

264

Conversions

ANSI C uses value-preserving rules for ari t hmetic conversions (whereas K&R C
implementations tend to use unsigned-preserving rules) Thus. for example:

int f(int x, unsigned char y)
{

return (x+y)/2;
}

does signed division. where unsigned-preserving implementations would do
unsigned division.

Aside from value-preserving ru les, arithmetic conversions follow those of K&R C.
with add it iona l rules fo r long double and unsigned long int. It is now also
possible to perform float arithmetic without widening to double.
Floating-point values truncate towards zero when they are converted to integral
types.

It is illega l to attempt to assign function pointers to data pointers and vice versa
(even using explicit casts) . The on ly exception to this is the value 0. as in :

int (*pfi)();
pfi = 0;

Assignment compatibility between structs and unions is now stricter. For
example. consider the following:

struct {char a; int b;} vl;
struct {char a; int b;} v2;
vl = v2; I* illegal because vl and v2

strictly have different types*/

Expressions
• structs and unions may be passed by value as arguments to functions.

• Given a pointer to function declared as. say. int (*pfi) ();. then the
function to which it points can be called either by pf i () ; or (*pf i) () ; .

• Due to the use of distinct name spaces for struct and union members
absolute mach ine addresses must be explici tly cast before being used as
struct and union pointers For example:

((struct io_space *)OxOOff)->io_buf;

Portability

.•.•.•••.............. ;a.-.,....----~~~~~~----====---.!"

Declarations

Perhaps the greatest impact on C of the ANSI Standard has been the adoption of
function prototypes. A function prototype declares the return type and argument
types of a function. For example. int f (int, float); declares a function
returning int with one i nt and one float argument. This means that a
function's argument types are part of the type of that function. thus giving the
advantage of stricter argument type-checking, especia l ly across source files A
function definition (which is also a prototype) is similar except that identifiers
must be given for the arguments. For example. int f (int i, float f);. It is
still possible to use 'old style' function declarations and definitions, but you are
advised to convert to the ·new style' . It is also possible to mix old and new styles of
funct ion declaration. If the function declaration which is in scope is an old style
one, normal integra l promotions arc performed for integral arguments. and
floats are converted to double. If the function declaration which is in scope is a
new style one. arguments are converted as in normal assignment statements.

Empty declarations are now illegal

Arrays cannot be defined to have zero or negative size.

Statements
• ANSI has defined the minimum attributes of control statements (eg the

minimum number of case limbs which must be supported by a compiler)
These values are almost invariably greater than those supported by PCCs, and
so should not present a problem.

• A value returned from main () is guaranteed to be used as the program's exit
code.

• Values used in the controlling statement and labels of a switch can be of any
integral type.

Preprocessor
• Preprocessor directives cannot be redefined.

• There is a new## directive for token-pasting.

• There is a directive# which produces a string literal from its following
characters. This is usefu l for cases where you want replacement of macro
arguments in strings.

265

The ToPCC and ToANSI tools

= ====== ====== == -----

• The order of phases of translation is well defined and is as follows for the
preprocessing phases:

Map source file characters to the source character set (th is includes
replacing t rigraphs).

2 Delete all newline characters which are immediately preceded by\.

3 Divide the source file into preprocessing tokens and sequences of wh ite
space characters (comments are replaced by a single space).

4 Execute preprocessing directives and expand macros.

Any #include files are passed through steps 1-4 recursively.

The macro _ STDC_ is #defined to I in ANSI-conform ing compilers

The ToPCC and ToANSI tools

The desktop tools ToPCC and ToANSI help you to translate C programs and
headers between the ANSI and PCC d ialects of C. For more detai ls of thei r use and
capabil i ties see the earlier chapters ToANSI and ToPCC.

pee compatibility mode

266

This section discusses the differences apparent when the compi ler is used in 'PCC'
mode. When the UNIX pee setup option is enabled, the C compi ler will accept
(Berkeley) UNIX-compatible C. as defined by the implementation of the Portable C
Compiler and subject to the restrictions which are noted below.

In essence. PCC-style Cis K&R C. as defined by B Kernighan and D Ritchie in their
book The C Programming Language, with a sma ll number of extensions and
clari fications of language features that the book leaves undefined.

Language and preprocessor compatibility

In UNIX pee mode, the Acorn C compi ler accepts K&R C. but it does not accept
many of the old-style compatibility features. the use of which has been deprecated
and warned against for many years. Differences are listed briefly below

• Compound assignment operators where the= sign comes first are accepted
(with a warning) by some PCCs. An example is =+ instead of+=. Acorn C does
not allow this ordering of the characters in the token.

• The= sign before a static inilialiser was not required by some very o ld C
compi lers. Acorn C does not support this syntax .

Portability

• The following very peculiar usage is found in some UNIX tools pre-dating UNIX
Version 7:

struct {int a, b;};
double d ;

d . a = 0;
d . b=Ox ;

This is accepted by some UNIX PCCs and may cause problems when porting
o ld (and bad ly written l code.

• enums are less strongly typed than is usua l under PCCs. enum is a non-K&R
extension to C which has been standardised by ANSI somewhat differently
from the usual PCC implementation.

• chars are signed by defau lt in UNIX pee mode.

• In UNIX pee mode, the compiler permits the use of the ANSI ' ••• ' notation
which signifies that a variable number of formal arguments follow

• In order to cater for PCC-style use of variadic functions. a version of the PCC
header fi le v arargs. his supplied with the release.

• With the exception of enums. the compiler's type checking is generally stricter
than PCC's- much more akin to lint's. in fact In writ ing the Acorn C compiler.
we have attempted to strike a balance between generating too many warnings
when compiling known. working code. and warning of poor or non-portable
programming practices. Many PCCs silently compile code which has no chance
of executing in just a sl ightly different environment We have tried to be
helpful to those who need to port C among machines in which the following
varies:

• the order of bytes within a word (eg little-endian ARM. VAX, Intel versus
big-endian Motorola. IBM370)

• the default size of int (four bytes versus two bytes in many PC
implementations)

• the default size of pointers (not always the same as int)

• whether values of type char default to signed or unsigned char

• the default hand ling of undefined and implementation-defined aspects of
the C language.

If the verbosity of cc in UNIX pee mode is found undesirable. al l warnings
ancl/or errors can be turned off using the Suppress warnings and/or Suppress
errors setup options.

267

pee compatibility mode

268

• The compiler's preprocessor is believed to be equiva lent to UNIX's cpp. except
for the points listed below. Unfortunately, cpp is only defined by its
implementation, and although equivalence has been tested over a large body
of UNIX source code, completely identica l behaviour cannot be guaranteed.
Some of the points listed beiow only apply when the Preprocess only option
is used with the CC tool.

• There is a different treatment of whitespace sequences (benign) .

• nl is processed by cc with Preprocess only enabled. but passed by cpp
(making lines longer than expected).

• Cpp breaks long lines at a token boundary: CC with Preprocess only
enabled doesn't (this may break line·size constra ints when the source is
later consumed by another program).

• The handling of unrecognised# directives is different (this is mostly
benign)

Standard headers and libraries

Use of the compiler in UNIX pee mode precludes neither the use of the standard
ANSI headers built in to the compiler nor the use of the run-time library supplied
with the C compi ler. Of course. the ANSI library does not contain the whole of the
UNIX C library, but it does contain almost all the commonly used functions.
However, look out for functions with different names. or a slightly different
definition. or those in different ·standard' places. Unless the user directs otherwise
using Default path . the C compiler will attempt to satisfy references to, say,
<stdio.h> from its in -store filing system.

Listed below are a number of differences between the ANSI C Library, and the BSD
UNIX library. They are placed under headings corresponding to the ANSI header
files:

ctype.h

There are no isascii () and toascii () functions, since ANSI Cis not
character-set specific.

- Portability

errno.h

On BSD systems there are sys_nerr and sys_errlist ()defined to give error
messages corresponding to error numbers. ANSI C does not have these. but
provides similar functionality via perror (const char *s) , which displays the
string pointed to by s followed by a system error message corresponding to the
current value of errno.

There is also char *strerror (int errnum) which, when given a purported
value o f errno. returns its textual equivalent.

math.h

The #defined value HUGE, found in BSD libraries. is called HUGE_ VAL in ANSI C.
ANSI C does not have asinh () , acosh () , a tanh () .

signal.h

In ANSI C the signal () function's prototype is:

extern void (*signal(int, void(*func)(int)))(int);

signal () therefore expects its second argument to be a pointer to a function
returning void with one int argument In BSD-style programs it is common to
use a function returning int as a signal handler. The PCC-style function
definitions shown below will therefore produce a compiler warning about an
implicit cast between different function pointers (since f ()defaults to int f ())
This is just a warning, and correct code will be generated anyway.

f(signo)
int signa;
{

}

main ()
{
extern f ();
signal(SIGINT, f);
}

269

Environmental aspects

......................... - c

stdio.h

sprintf () now returns the number of characters 'printed' (following UNIX
System V). whereas the BSD sprintf () returns a pointer to the start of the
character buffer.

The BSD functions ecvt () . fcvt () and gcvt () are not included in ANSI C.
since their functionality is provided by spr intf () .

string.h

On BSD systems. string manipulation functions are found in strings. h. whereas
ANSI C places them in <string. h>. The Acorn C Compiler also has strings. h
for PCC-compatibility.

The BSD functions index () and r index () are replaced by the ANSI functions
strchr () and strrchr () respectively

Functions which refer to string lengths (and other sizes) now use the ANSI type
size_t. which in our implementation is unsigned int.

stdlib.h

malloc() returns void *.rather than the char *of the BSDmalloc() .

float.h

A new header added by ANSI giving details of floating point precision etc.

limits.h

A new header added by ANSI to give maximum and minimum limit values for data
types

locale.h

A new header added by ANSI to provide local environment-specific features.

Environmental aspects

270

When porting an application. the most extensive changes will probably need to be
made at the operating system interface level. The following is a brief description of
aspects of RISC OS and Acorn C which differ from systems such as UNIX and
MS-DOS.

The most apparent interface between a C program and its environment is via the
arguments to main ().The ANSI Standard declares that main () is a function
defined as the program entry point with either no arguments or two arguments

Portability

(one giving a count o f command line arguments. commonly called int argc. the
other an array of pointers to the text of the arguments themselves. after removal of
input/output redirection, commonly called char * argv [1) As d1scussed in the
section Environment (A.6.3.2) on page 77. Acorn C supports the style of input/output
redirection used by UNIX BSD4 3. but does not support filename wildca rding.
Further parameters to main () are not supported.

Under UNIX and MS-DOS. it is common to use a third parameter. normally called
char *environ[1 under UNIX and char *envp[1 under Microsoft C for
MS·DOS. to give access to environment variables. The same effect can be achieved
in ou r system by using getenv () to request system variable values explicitly; the
names of these variables are as they appear from a RISC OS *Show command. The
string pointed at by argv[01 is the program name (similar to UNIX and MS-DOS.
except the name is exactly that typed on invocation. so if a full path name is used to
invoke the program. this is what appears in argv[0]).

l'ile naming is one of the least portable aspects in any programming environment.
RISC OS uses a full stop(.) as a separator in pathnames and does not support
filename extensions (nor does UNIX. but existing UNIX tools make assumptions
about file naming conventions) The best way to simu late extensions is to create a
directory whose name corresponds to the required extension (in a manner simi lar
to the use of c and h directories for C source and header fi les) RISC OS filename
components are limited to 10 characters

The Acorn C compiler has support for making Software Interrupt (SWI) calls to
RISC OS routines. which can be used to replace any system calls which you make
under UNIX or MS-DOS The include file kernel . h has function prototypes and
appropnate typedefs for issuing SWis. Brieny. the type _kernel_ swi_regs
allows values to be placed in registers RO-R9. and _kernel_swi () can then be
used to issue the SWI; a list of SWI numbers can be found in the include fi le
swis . h . File information. for example. can be obtained in a way similar to
stat () under UNIX. by making an OS_GBPB SWI with RO set to the reason code
I I (full file information). Most of the UNIX/MS-DOS low-level 1/0 can be simulated
in thi s way, but the ANSI C run-time l ibrary provides suffi cient support for most
app lications to be written in a portable style.

You' ll find some more information on kernel. h in comments within the header
file itself.

RISC OS does not support different memory models as in MS-DOS. so programs
which have been written to exploit this will need modification. this should on ly
require the remova l of Microsoft C keywords such as near. far and huge, if the
program has otherwise been written with portability in mind

271

272

17 Assembly language interface
we•••••••••••••••••• •••••rewwwwwww• ww

Interworking assembly language and C- writing programs with both assembly
language and C parts- requires use both of ObjAsm and of CC and/or C++.

Further explanation of examples is provided in the chapter Jntenvorking assembler witfr
C on page I 75 of the Acorn Assembler guide.

lnterworking assembly language and C can be very useful for construction of top
qua lity RISC OS applications. Using this technique you can take advantage of
many of the strong points of both languages. Writing most of the bulk of your
application inC allows you to take advantage of the portability of C, the
maintainability of a high level language and the power of the C l ibraries and
language. Writing critical portions of code in assembler al lows you to take
advantage of all the speed of the Archimedes and all the features of the machine
(eg use the complete floating-point instruction set).

The key to interworking C and assembler is writing assembly language procedures
that obey the ARM Procedure Cal l Standard (APCS). This is a contract between two
procedures. one calling the other. The called procedure needs to know which ARM
and floating-point registers it can freely change without restoring them before
return ing, and the cal ler needs to know which registers it can rely on not being
corrupted over a procedure calL

Additionally, both procedures need to know which registers contain input
arguments and return arguments. and the arrangement of the stack has to follow a
pattern that debuggers and so on can understand. For the specification of the
APCS, see the appendix ARM procedure call standard on page 24 7 of the Desktop Tools
guide.

This chapter explains how C uses the APCS, in terms of the appearance of
assembly language optionally output by CC and the way the stack set up by the C
run-time library works.

27 3

Register names

Register names

Register usage

274

The following names are used in referring to ARM registers

al RO Argument I, also integer result, temporary
a2 Rl Argument 2, temporary
a3 R2 Argument 3, temporary
a4 R3 Argument 4, temporary
vl R4 Register variable
v2 R5 Register variable
v3 R6 Register variable
v4 R7 Register variable
vS R8 Register variable
v6 R9 Register variable
sl RIO Stack l imit
fp Rll Frame pointer
ip Rl2 Temporary work register
sp Rl 3 Lower end of current stack frame
lr Rl4 Link address on calls. or workspace
pc Rl5 Program counter and processor status

fO FO Floating point result
fl Fl Floating-point work register
f2 F2 Floating-point work register
f3 F3 Floating-point work register
f4 F4 Floating-point register variable (must be preserved!
fS F5 Floating-point register variable (must be preserved)
f6 F6 Floating-point register variable (must be preserved)
f7 F7 Floating-point register variable (must be preserved)

In this section. 'at [r] · means at the location pointed to by the value in register r;
'at [r ,#n J ·refers to the location pointed to by r+n . This accords with ObjAsm's
syntax.

The fol lowing points should be noted about the contents of registers across
function ca lls.

• Ca ll ing a function (potentially) corrupts the argument registers alto a4, ip,
lr, and f0-f3 . The calling function should save the contents of any of these
registers it may need.

• Register lr is used at the time of a function call to pass the return link to the
called function; it is not necessarily preserved during or by the function call.

Control arrival

Assembly language interface

• The stack pointer sp is not altered across the function call itself, though it may
be adjusted in the course of pushing arguments inside a function The limit
register sl may change at any time. but should always represent a valid limit
to the downward growth of sp. User code will not normally alter this register.

• Registers vl to v6 , and the frame pointer fp. are expected to be preserved
across function calls. The ca lled procedure is responsible for saving and
restoring the contents of any of these registers which it may need to use.

At a procedure call, the convention is that the registers are used as follows

• alto a4 contain the first four arguments. If there are fewer than four
arguments. just as many of al to a4 as are needed are used.

• If there are more than four arguments. sp points to the fifth argument; any
further arguments will be located in succeeding words above [sp J.

• fp points to a backtrace structure.

• sp and sl define a temporary workspace of at least 256 bytes available to the
procedure.

• sl contains a stack chunk handle, which is used by stack handling code to
extend the stack in a non-contiguous manner.

• lr contains the va lue which shou ld be restored into pc on exit from the called
procedure.

• pc conta ins the entry address of the ca l led procedure.

Passing arguments

All integral and pointer arguments are passed as 32-bit words. Floating point 'float'
arguments are 32-bit values, 'double'-argument 64-bit values. These follow the
memory representation of the IEEE single and double precision formats.

Arguments are passed as if by the following sequence of operations:

• Push each argument onto the stack. last argument first

• Pop the first four words (or as many as were pushed. if fewer) of the arguments
into registers alto a4.

• Call the function. for example by the branch with link instruction

BL functionname

In many cases it is possible to use a simplified sequence with the same effect (eg
load three argument words into al-a3).

275

Return link

Return link

If more than four words of arguments are passed. the calling procedure should
adjust the stack pointer after the call. incrementing it by four for each argument
word which was pushed and not popped.

On return from a procedure. the registers are set up as follows:

• fp, sp. sl. vl to v6 and f4 to f7 have the same values that they conta ined
at the procedure call.

• Any resu lt other than a floating point or a multi-word structure value is placed
in register al.

• A floating point result should be placed in register fO .

Structure values returned as function results are discussed below.

Structure results

276

A C function which returns a multi-word structu re result is treated in a slightly
different manner from other functions by the compiler. A pointer to the location
which shou ld receive the result is added to the argument list as the first argument,
so that a declaration such as the following:

s_type afunction(int a, int b, int c)
{

s_ type d;
I* o o o *I
return d;

is in effect converted to this form:

void afunction(s_ type *p, int a, int b, int c)
{

s_type d;
I* o o o *I
*p = d;
return;

Any assembler-coded functions returning structure results. or calling such
functions, must conform to this convention in order to interface successfu lly with
object code from the C compiler.

Assembly language interface

Storage of variables

The code produced by the C compiler uses argument values from reg1sters where
possible. otherwise they are addressed relative to fp. ac; il lustrated in E)(arnples
below

Local variables. by contrast. are always addressed with pos1tive offsets relative to
sp In code which alters sp. this means that the offset for the same variable will
d11fer I rom place to place. The reason for this approach is that it permits the stack
overnow procedure to recover by changing sp and sl to point to a new stack
segment as necessary.

Function workspace

Examples

The va lues of sp and sl passed to a ca lled function define an area of readable.
writable memory avai lable to the ca lled function as workspace. All words below
[sp J and at or above (sl , # - 51 2] are guaranteed to be available for read ing and
writing, and the minimum allowed value of sp is sl-256 Thus the minimum
workspace available is 256 bytes.

The C run-time system. in particular the stack extension code requires up to 256
bytes of additional workspace to be left free Accordingly. all ca lled functions which
require no more than 256 bytes of workspace should test that sp does not point to
a location below sl. in other words that at least 512 bytes rema1n If the value in
sp is less than that in sl, the function should call the stack extension function
x$stack_overflow. Functions which need more than 256 bytes of workspace
should amend the test accordingly. and call x$stack_overflowl . as described
below. The following examples illustrate a method of performmg this test

Note that these are the (-specific aliases for the kernel functions
_kernel_stkovf_split_ Oframeand_kernel_stkovf_split_frame
respectively, described in the chapter Tf1e sf1ared C library in the RISC OS 3
Programm1'r'S Reference Manual.

The following fragments of assembler code i l lustrate the main points to consider
in interfacing with the C compi ler. If you want to examine the code produced by the
compiler in more deta il for particu lar cases. you can request an assembler l isting
by enabling the Assembler option on the CC SetUp menu

277

Examples

278

This is a function gggg which expects two integer arguments and uses only one
register variable, vl. It ca lls another function ffff.

gggx

gggy

AREA
IHPORT
IMPORT

EXPORT
DCB
ALIGN
DCD

ICS$codel, CODE, READONLY
I ffff I
lx$stack_overflow l
lggggl
"gggg"' 0 ;name of function, 0 terminated

;padded to word boundary
&f£000000 + gggy - gggx

;dist. to start of name
;Function entry: save necessary regs. and args. on stack
gggg HOV ip, sp

STHFD
SUB

spl, {al, a2, vl, fp, ip, lr, pc}
fp, ip, #4 ;points to saved pc

;Test \'-'Orkspace size

CI·IPS Sp, sl
BLLT lxSstack_overfl0\<1

;~lain activity of function

ADD
BL
C~IP

vl, vl, #1

I ffffl
vl, #99

;use a register variable
;call another function
;rel y on reg. var. after call

;Return: place result in al, and restore saved registers
MOV al, result
LDMEA fp, {vl, fp, sp, pc}·

If a funct ion will need more than 256 bytes of workspace, it should replace the
two-instruction workspace test shown above with the following:

SUB ip , Sp, #n
CMP ip, sl
BLLT lxSstack_overflowll

where n is the number of bytes needed. Note that x$stack overflow! must be
cal led if more than 256 bytes of frame are needed. ip must contain sp_needed,
as shown in the example above.

A function which expects a variable number of arguments shou ld store its
arguments in the following manner, so that the whole list of arguments is
addressable as a contiguous array of va lues

MOV ip, sp ;copy value of sp
STMFD sp! , {al, a2, a3, a4};save 4 words of args.
STMFD sp!, {vl, v2, fp, ip, lr, pc}

;save vl-v6 needed
SUB fp, ip, #20;fp points to saved pc
CMPS sp, sl ;test workspace
BLLT \ x$stack_overflowl

Some complete program examples are described in the chapter ln terworking
assembler witf1 Con page 175 of the Acorn Assembler guide.

18

Getting started

How to write relocatable modules
inC

Relocatable modules are the basic building blocks of RISC OS and the means by
which RISC OS can be extended by a user. The archetypal use for RISC OS

extensions is the provision of device drivers for devices attached to Archimedes
hardware.

Relocatable modu les also provide mechanisms which can be exploited to:

• extend RISC OS's repertoire of built-in commands(* commands)
(ana logous to plugging additional ROMs into a BBC microcomputer of
pre-Archimedes vintages)

• provide services to applications (for example, as does the shared C library
module)

• implement 'terminate and stay resident' (TSRl appl1cat1ons

The idea of TSR applications will be most familiar to PC users. whereas extending
the • command set (via ·software ROM modules) will seem most familiar to those
with a background in the BBC computer. A complete d1scussion of these topics is
beyond the scope of this chapter.

For modules which provide services. the principal mechanism for accessing those
services from user code is the SoftWare Interrupt (SWI l For example. the shared C
library implements a handler for a single SWI which. when called from the library
stubs linked with the application. returns the address of the C library module
which in turn allows the library stubs to be initialised to point to the correct
addresses within the library module. Thereafter. library services are accessed
direct ly by procedure call. rather than by SWI ca ll. All this illustrates is the rich
variety of mechanism avai lable to be exploited.

To write a module inC you will need:

• the CC and CM HG tools supplied with Acorn C/C 1- t

• the C Library stubs supplied with Acorn CIC++

• a thorough understanding of RISC OS modules (read the Modules chapter of the
RISC OS 3 Programmer's Reference Manual)

279

Constraints on modules wriNen in C

Constraints on modules written inC

A module wntten inC must use the shared C library module via the library stubs.
Use of the stand-alone C library (ANSI Lib) is not a supported option

All components of a module written inC must be compiled with the compiler
SetUp menu option Module code enabled This allows the module's static data to
be separated from its code and multiply instantiated

Overview of modules written inC
A module written inC includes the fo llowing

• a Modu le I leader (described in the Modules chapter of the RISC OS '3
Programmer's Refat'nCI' Manual), constructed using CMIIG:

• a set of entry and exit 'veneers', interfacing the modu le header to the C
run-t ime environment (also constructed using CMIIG).

• the stubs of the shared C library;

• code written by you to implement the module's functionality for example
•command handlers, SWI handlers and service call handlers

These parts must be linked together using the Link tool with the SetUp box
Module option enabled

The next section describes:

• how to write a CMHG input file to make a module header and any necessary
entry veneers

• the interface definitions to which each component of your module must
conform

• how to write a CMHG input file to generate entry veneers for 11~0 and event
handlers written in C.

Functional components of modules written in C

280

The following components may be present in a module written inC (all are
oplionCI I except for the t it le string and the help string which are ob ligatory):

• Runnable application code (ca lled sta rt code in the modu le header
description). This wi ll be present if you tell CMHG that the module is runnable
and include a main () function <:Jmongsl your module code

• Initialisation code. ·system· initialisation code is always present, as the shared
library must be initialised. Your initialisation function will be called after the
system has been initialised if you declare its name to CMHG

How to write relocatable modules in C

• l"inalisat ion code The C library has to be closed down properly on module
termination Your own finalisation code will be cal led before the system has
been closed down if you declare its name to CMHG

• Service call handler This will be present if you declare the name of a handler
function to CMHG In add ition. you can give a list of service cal l numbers
which you wish to deal with and CMHG will generate fast code to ignore other
calls without calling you r handler.

• A title string in the format descri bed in the RISC OS 3 Programmer's Reference
Manual CMHG will insist that you give it a va lid ti tle stri ng

• A help string in the format described in the RISC OS 3 Programma's Reference
Manual. Again. CMHG will insist that you give a va lid help string.

• llelp and command keyword table. This section is optional and will be present
only if you describe it to CMHG and declare the names o f the command
handlers to CMHG. Obviously, their implementations must be included in the
linked module.

• SWI chunk base number. Present only if declared to CMHG

• SWI handler code. Present if you declare the name of a hand ler functi on to
CMIIG

• SWI decoding table. Present on ly if described to CMHG

• SWI decoding code Present only if you declare the name of your decoding
function to CMHG

• IRQ handlers Though not associated with the module header. CMI IG will
generate entry veneers for IRQ handlers. You can register these veneers with
RISC OS using SWI OS_Ciaim. etc. you have to provide implementations of the
handlers themselves. The names of the hand ler functions and of the entry
veneers have to be given to CMHG.

• An even t handler Though not associated with the module header. CMIIG will
generate entry veneers for an event handler. You can register these veneers
with RISC OS using SWI OS_Ciaim. etc; you have to provide implementa ti ons
o f the handlers themselves. The names of the handler functions and of the
entry veneers have to be given to CMHG.

F:ach component that you wish to use must be described in your input to CMHG.
Usc ol most components also requires that you writ e some C code which must
con form to the interface descriptions given in the sections below

281

Functional components of modules written in C

282

The C module header generator

The C Module Header Generator !CMHG) is a special-purpose assembler of
module headers It accepts as input a text file describing which module Facilities
you wish to use and generates as output a linkable object module (In ARM Object
Format). For details of how to run the CMHG tool , see the chapter entitled CMHG
earlier in this manual

The format of input to CMHG

Input to CMHG is in free format and consists of a sequence of 'logical lines·. Each
logica l I ine sta rts with a keyword which is followed by some number of parameters
and (sometimes) keywords The precise form o f each kind of logica l input line is
described in the following sections.

A logica l line can be continued on Lhe nexl line of input immediately after a
comma (that it. if the next non-white-space character after a comma is a newline
then the line is considered to be continued).

Usls of parameters can be separated by commas or spaces. but use of comma is
required if the line is to be continued

A comment begins with a ; and continues to the end or the current line A
comment is valid anywhere that trailing white space is valtd land. in particular.
after a comma)

A keyword consists of a sequence of alphabetic characters and minus signs. Often.
a keyword is the same as the description of the corresponding field of the module
header (as described in the RISC OS 3 Programmer's RefemtCt' Mattua[) but with
spaces replaced by minus signs For example initialisation-code
title-string service-call-handler

Keywords are always written entirely in lower case and are always immediately
followed by a : Character case is significant in all contexts : in keywords. in
identifiers. and in strings.

Numbers used as parameters are unsigned. Three formats are recognised:

• unsigned decimal

• Oxhhh .. (up to 8 hex digits)

• &hhh . (up to 8 hex digits).

In the following sections. the parts headed CMHG descriptio11 tell you what you have
Lo describe to CMHG in order to use the facility described in that section. the parts
headed C interface introduce a description of the interface to which the handler
function you write must conform. You may omit any trai ling arguments that you
don't need from your handler implementations

How to write relocatable modules in C

Runnable application code

CMHG description:

module-is-runnable:

C interface:

int main(int argc, char •argv[]);
I*

No parameters.

* Entered in user-mode with argc and argv
• set up as for any other application. Malloc
• obtains storage from application workspace.
*I

To be useful (ie re-runnable) as a 'terminate and stay resident' appl ication. a
runnable application must implement at least one • command handler (see
below) for its command line, which, when invoked. enters the module (calls SWI
OS_Module with the Enter reason code).

Initialisation code

CMHG description: /

(ovJ< r J

initialisation-code : user_i~t

I
The name of your initialisation function.
Any valid C function name \~ill do.

I C interface

_kerne l _oserror •user ini:~har *cmd_fail, int podule_base, void *pw);
!•

* Return NULL if your initialisation succeeds; othe~~ise return a poi nter to an
• error block. cmd_tail points to the string of arguments with which the
*module is invoked (may be "").
* podule_base is 0 unless the code has been invoked from a podule.
• pw is the 'r12' value established by module initialisation. You may assume
• nothing about its value (in fact it points to some RMA space claimed and
• used by the module veneers). All you may do is pass it back for your module
• veneers via an intermediary such as SWI OS_Cal l Every (use _kernel_swi() to
*issue the SWI call).
•I

Note that you can choose any valid C function name as the name of your
init ialisation code (CM HG insists on no more than 31 cha racters).

28 3

Functional components of modules written in C

284

Finalisation code

CMHG description

finalisation-code: user final

C interface

The name of your finalisation function.
Any valid C function name \~ill do.

extern _kerne l _oserror •user_final (int fatal, int podule, void *P\~);
I•

* Return NULL if your finalisation succeeds. Otherwise return a pointer to an
* error block if your finalisation handler does not wish to die (e.g. toolbox
• modules return a 'Task(s) active' error).
* fatal, podule and pw are the values of RlO, Rll and Rl2 (respectively)
* on entry to the finalisation code.
•I

A call to library finalisation code is inserted automatically by CMHG: the C library
finalisation code will call your finalisation handler immediately before closing
down the library (on module finalisation).

Service call handler

CMHG description:

service-call-handler: sc_handler <number> <number> ...

C interface

void sc_handler(int service_number, _kernel_swi_regs •r, void *pw);
!•

• Return values should be poked directly into r->r[n];
* the right value/register to use depends on the service number
• (see the relevant RISC OS Programmer's Reference Hanual section for details).
* pw is the private 1~ord (the 'rl 2' value.
*I

Service calls provide a generic mechanism. Some need to be handled quickly:
others are not time critical. Because of this. you may give a list of service numbers
in which you are interested and CMHG will generate code to ignore the rest quickly.
The fast recognition code looks like

CHPS rl, #FirstinterestingServiceNurober
CHPNES rl, #SecondinterestingServiceNumber

CHPNES rl, #NthinterestingServiceNumber
HOVNES pc, lr ; drop into service call entry veneer.

If you give no list of interesting service numbers then all service calls will be passed
to your handler.

How to write relocatable modules in C

llllilll!llliiiiiR""IIIIl-----·&l*-*la*-*l:lll*lll"~*lll*--llllllili"'"IE--IIrllililll-!lllillllllf:l~lllhlllll11111i8 illl 1111

In order to construct a relocatable module which implements a RISC OS
application (a TSR application) you must claim and deal with the Service_Memory
service call. See the relevant section in the Programmer's Reference Manual for
details of this service ca ll.

The following is a su itable handler written inC for this service cal l

#define Service_~lemory Oxll
extern void FrontEnd_services(int service_number, _kernel_swi_regs *r, void
•pw)
{

IGNORE(pw);
I* keep application workspace (r2 holds CAO pointer) •/
if (service_ number == Service Hemory && r->r(2] ==
(in.t) Image_ RO_ Base)
{

r->r[l] = 0; I* r efuse to relinquish app. workspace •I

The above handler needs to compare the contents of rl2l with the address of the
base of your module containing it This is not a value directly avai lable in C. so the
following assembly language fragment can be used to gain access to the symbol
lmageSSROSSBase. which is defined by Link when your module is l inked together

IMPORT jimage$$RO$$BaseJ
EXPORT Image_RO_Base

AREA Code_Description, DATA, REL
Image_ RO Base

DCD Jimage$$RO$$Base J

END

Title string

CMHG description:

title-string: title

title must consist entirely of printable. non-space ASCII characters.

Any underscores in the title are replaced by spaces. CMHG will fault any title
longer than 31 characters and warn if the length of the title string is more than 16.

285

Functional components of modules written in C

286

Help string

CMHG description

help-string: help d.dd comment ; help string and version number

The help string is restricted to 15 or fewer alphanumeric. ASCII characters and
underscores. Longer strings are truncated (with a warning) to 15 characters then
padded with a single space. Shorter titles are padded with one or two TAB
characters so they will appear exactly 16 characters long.

The version number must consist of a digit, a dot, then 2 consecutive digits.
Conventionally. the first digit denotes major releases; the second digit minor
releases; and the third digit bug-fix or technical changes If the version number is
omitted. 0.00 is used.

CMHG automatically inserts the current date into the version string. as requ ired by
RISC OS convention.

A 'comment' of up to 34 characters can also be included after the version number.
It will appear in the tail of the module's help string, after the date. A typical use is
for annotating the help string in the following style

SorneModule 0.91 (27 JUN 1989) Experimental version

CMHG refuses to generate a help string longer than 79 characters and warns if it
has to truncate your input.

Help and command keyword table

CMHG description:

command-keyword-table: cmd_handler command-description+

(Here command-description+ denotes one or more command descriptions).

A command-description has the format:

star-command-name "("
min-args:
max-args:
gstrans-map:
fs-command:
status:
configure:

unsigned-int
unsigned-int
unsigned-int

help:
invalid-syntax: text
help-text: text
")"

default 0
default 0
default 0
flag bits in
the flag byte
of the cmd table
info word.

Each sub-argument is optional A comma after any item allows continuation on
the next line.

How to write relocatable modules in C

~~:ews.•u•~t~ __ ,. ____ wn•-=~'~====•-llllm------=--m=--ll'l---=•=-=.-=-o:.. -'*"

A t ext item fo llows the conventions of ANSI C string constants: it is a sequence of
implicitly concatena ted string segments enclosed in " and ".

Segments may be separated by wh ite space or newlines (no continuation comma
is needed following a string segment).

Within a stri ng segment\ introduces an escape character. All the single character
ASCII escapes are implemented. but hexadecimal and octa l escape codes are not
implemented. A\ immediately preced ing a new I ine allows the string segment to be
conti nued on the following line (bul does not incl ude a newline in the stri ng; if a
newline is required. it must be explicitly incl uded as \n).

min-ar gs and max-args record the min imum and maximum number of
arguments the command may accept; gstrans-map records, in the leasl
significant 8 bits. which o f the fi rst 8 arguments should be subject to expansion by
OS_CSTrans before ca lling the command handler.

The keywords fs-command. status. configure and help set bits in lhe
command's information word which mark the command as being of one of those
classes.

inval i d-syntax and help- text messages are (should be) sel f-explanatory

Example CMHC description:

comma nd - keywo rd-table : cmd_ hand ler
tmO(min-args : 0 , max-args : 255 ,

help-text : "Syntax\ttml <fi l enames>\ n"),
tml(min-args:l, max- a r gs :l,

help-tex t : "Syntax\ttm2" " <int eger>"
"\n")

This describes two* commands. * tmO and *tm I. which are to be handled by the C
function cmd handler. The handler fu nction will be ca lled wi th 0 as its third
argument if it is be ing ca lled to hand le the fi rst command (tmO. above). I as its
th ird argument if it is being ca lled to hand le the second command (tm I , above!.
etc. The programmer must keep the CMHG description in step with the
implementation of cmd_hand ler

287

Functional components of modules written in C

288

C interface:

_kernel_oserror *cmd_handler(char •arg_string, int argc, int cmd_no, void *pw);

• I! cmd no identifies a *HELP entry, then cmd_handler must return
• arg string or NULL (if arg string is returned, the NUL-terminated
• buffer will be printed) .
• Return NULL if if the command has been successfully handled;
• otherwise return a pointe r to an error block describing the failure
• (in this case, the veneer code will set the 'V' bit) .
• *STATUS and *CONFIGURE handlers will need to cast •arg string• to
• (possibly unsigned) long and ignore argc . See lhe RISC OS Programmer's
• Reference Manual for det ails.
• pw is t he pr i vat e word pointer (' r 12 ') value passed into the entry veneer
•I

SWI chunk base number

CMIIC description

s wi-chunk- base-number : number

You shou ld use this entry if your module provides any SWI hand lers It denotes the
ba'>c of a range o f 64 values which may be passed to your SWI hand ler. SWI chunks
are allocated by Acorn read the documentation carefully to d iscover which chunks
you may use safe ly. In some cases you may need to wnte to Acorn to get a chunk
allocated uniquely to your product (though this shou ld not be undertaken lightly
and should only be done when all alternatives have been exhausted) See the
chapter An inlroductiotr to SWis in the RISC OS 3 Programma's Rt'{t'ft'llCt' Manual for
more details

SWI handler code

CMHG descript ion

swi-handler-code : swi_handl e r any valid C function name will do

C interface

kernel_ oserror •swi_handler(int swi_no, _ kernel s wi regs *r , void *pw);
I*

• Retur n: NULL if the SWI is handled success fully; o therwise return
• a point er t o an error block which describes t he error .
• The ve neer code s e ts the ·v· bi t if the retur ned va lue i s non-NULL.
• The ha ndl e r may update any of i t s input r egisters (r 0-r9).
• ps is t he private word poi nter (' rl2 ') value passed i nto t he
• s wi handler e ntr y veneer .
•I

If you r modu le is to handle SWis then it must include both swi-handler-code
and swi-chunk-base.

How to write relocatable modules in C

Example CMHG description·

swi-chunk-base-number: Ox88000
swi-handler-code:

SWI decoding table

CMHG descrtption ·

widget_swi

swi-decoding-table: swi-base-name swi-name*

This table. it present, is used by OS_SWINumberTo/FromString.

Example CMHG description.

swi-chunk-base-number :
swi-handler-code:
S\d-decoding-table :

OxBBOOO
widget swi
IHdget,
Init Read Write Close

Th is would be appropriate for the following name/number pairs:

IHdget_ Init
IHdget Read
Widget Write
Widget Close

SWI decoding code

CMIIG description

OxBBOOO
Ox88001
Ox88002
OxB8003

swi-decoding-code: swi_decoder any valid C function name will do

C interrace

void swi decode(int r(4], void *pw);
I*
*On entry, r[OJ < 0 means a request to convert from text to a number.
* In this case r(l] points to the string to convert (terminated by a
*control character, NOT necessarily by NUL).
*Set r(O] to the offset (0 .. 63) of the SWI within the SWI chunk if
* you recognise its name; set r[O] < 0 if you don't recognise the name.

• On entry , r [O] >= 0 means a request to convert from a SWI number to
• a SWI string :

r[O] is the offset (0 .. 63) of th SWI within the SWI chunk .
r (l] is a pointer to a buffer ;

• r[2] is the offset within the buffer at which to place the text;
r[3J points to the byte beyond the end of the buffer.

* You should write th SWI name into the buffer at th position given
• by r[2] then update r[2) by the length of the text written (excluding
*any terminating NUL, if you add one).

• pw is the private word pointer ('rl2') passed into the swi decode
• entry veneer.
•I

289

Functional components of modules written in C

,,.
'

290

- ·- ..
If you omit a SWI decoding table then your SWI decoding code will be called
instead. Of course, you don't have to provide either.

Turning interrupts on and off

i

The following 1 <kernel. h>) library functions support the control of the interrupt
enable state:

int _irqs_disabled(void);
I*
* Returns non-0 if IRQs are currently disabled.
•I

void irqs off(void);
I• I'
* Disable IRQs .
•I

void irqs on(void);
I• ~~~ -

• Enable IRQs.
•I

These functions suffice to allow saving. restoring and setting of the IRQ state.
Ground rules for using these functions are beyond the scope of this document
However, general advice is to leave the IRQ state alone in SWI handlers which
terminate quickly. but to enable it in long-running SWI handlers.

What a SWI handler does to the IRQ state is part of its interface contract with its
clients: you , t he implementor. control that interface contract

How to write relocatable modules in C

IRQ handlers

CMHG description

irq-handlers: entry_n~~e/handler_name ...

Any number of entry name/handler_name pairs may be given If you om1t the I and
the handler name. CMHG constructs a handler name by appending _handler to
the entry name

C interface

extern int entry_name(_kernel_swi_regs *r, void •pw);
!•

• This is name of the IRQ handler entry veneer compiled by CMHG.
• Use t.his name as an argument to, for example, Sin OS Claim, in
* order to attach your handler to Irqv.
*I

int handler_name(_kernel_swi _regs •r, void •pw);
!•

• This is the handler function you must write to handle the IRQ for
• which entry name is the veneer function.

• Return 0 if you handled the interrupt.
• Return non-0 if you did NOT handle the interrupt (because,
• for example, it wasn't for your handler, but for some other
• handler further down the stack of handlers).

• •r• points to a vector of words containing the values of r0-r9 on
• entry to the veneer. Pure IRQ handlers do not require these, though
• event handlers and filing system entry points do. If r is updated,
• the updated values will be loaded into r0-r9 on return from the
• handler.

• pw is the private word pointer ('rl2') value with which
• the IRQ entry veneer is called.
•I

llandlcrs must be installed from some part of the module which runs in SVC mode
(eg initialisation code. a SWI handler, etc). The name to use at installation time is
the entry_name tnot the name of the handler function). This is because C
funct ions cannot be entered directly from IRQ mode, but have to be entered and
C'X it ed via a veneer wh ich switches to SVC mode. Running in SVC mode gives your
fld nd lcr maximum flexi bi I ity.

IRQ handiC'rs can also be used as filing system entry points. A full discussion of
these topics is beyond the scope of this Guide; refer to the RISC OS 3 Programma's
Rt'{erena Manual for details and for information on how lo install and remove
h<H1dlers

291

Functional components of modules written in C

..

292

·-·-- ;;,. .. ;;;;;,:: .. .;;;;;:.,JIILdlt!iiiiiLWWWW

Event handler

CMHG description

event-handler: entry_ name/handler_narne event_no event_no

Only one entry_name/hand ler_name pair may be given.

C interface

extern int entry_name(_kernel SIVi_regs •r, void *pw);
!•

* This is name of the event handler entry veneer compiled by CMHG.
• Use this name as an argument to, for example, SWI OS_Claim, in
* order to attach your handler to EventV.
•I

int handler_name(_kernel_ swi_regs •r, void *PI~);
I*

* This is the handler function you must write to handle the event for
* which entry_name is the veneer function.

* Return 0 if you wish to claim the event.
* Return non-0 if you do not wish to claim the event.

* 'r' points to a vector of words containing the values of r0-r9 on
* entry to the veneer. If r is updated, the updated values will be
* loaded into r0-r9 on return from the handler.

*
* pw is the private word pointer (' rl2') value with which
* the event entry veneer is called.
*I

The name to use at installation time is the entry _name (not the name of the
handler function). Refer to the RISC OS 3 Programmer's Reference Manual for details
and for information on how to insta ll and remove event handlers. As an example,
this is the skeleton of an event handler for key presses and mouse clicks:

I* the claim/free functions ... •!

#define Eventv 16
#define EnableEvent 14
#define DisableEvent 13
#define MouseClick 10
#define Keypress 11

static void claim_release(int claim, void •pw)

_kernel_swi_regs regs;
regs.r[O) EventV;
regs.r[l] = (int) register event;
regs.r[2) = (int) pw;
kernel SWl(claim? OS_Claim : OS_Release,®s,®s);

How to write re/ocatab/e modules in C

static void add_remove(int add)

kernel swi_ regs regs;
regs.r(OJ = add ? EnableEvent:DisableEvent;
regs.r(l] = MouseClick; I* mouse * I
_kernel_swi(OS_Byte,®s,®s);
regs.r(l] =Keypress;
_kernel_swi(OS_Byte,®s,®s);

I• keyboard •1

static void claim_ free_events(int claim,void *pw)

if (claim) {

} else {

I• init ... •I

claim release(l,pl~);
add_remove(1);

add remove(O);
claim_release(O , pw);

extern kernel_oserror •events_init(char •cmd tail , int podule .base, void •pw)

IGNORE(cmd_tail);
IGNORE(podule base);
claim_ free events(l,pw);
return NULL;

I • finalise ... *I
extern _ kernel oserror •events_final (int fatal, int podule, void •pw)

IGNORE(fatal);
IGNORE (podule) ;
I* handle low level events •I
claim_ free_events(O,pw);
return NULL;

I• the handler itself ... •I
extern int event_handler(_kernel_swi regs *r,void *pw)

IGNORE(pw);
I• switch on the event code •I
switch (r->r[O))
case MouseClick:
case Keypress :

break;
default:

break;

return 1;

293

Functional components of modules written in C

294

••·····~.:a:a:wa••••••we•• IIIIIIIW'W ww:w • erene

Library initialisation code

CMHG description:

library-initialisation-code: xxxx

The code xxxx is cal led instead of _clib_initialisemodule. Because the
C library has not been initialised at this point, and there is hence no
C environment present. xxxx must be written in assembler. It should be a veneer
around a ca ll to clib initialisemodule. - -

19 Overlays

Overlays are a very o ld technique for squeezing quart-sized programs into
pint-sized memories: a kind of poor man's paging.

In common with paged programs. an overlaid program is stored on some backing
store medium such as a floppy disc or a hard disc and its components (called
overlay segments) are loaded into memory on ly as required. ln theory, this reduces
the amount oi memory required to run a program at the expense of increasing the
time taken to load it and repeatedly re-load parts of it It is a classic space-time
trade-off. In practice. except in rather specia l circumstances. the saving in memory
accruing from the use of overlays is rather modest and less than you might expect
Indeed, as discussed below. overlays have rather restricted appl icabil ity under
RISC OS. Nonetheless. their use can occasional ly be a 'life saver'.

Paging vs overlays

In a paged system, a program and its workspace is broken up into fixed size chunks
cal led pages. A combination of special hardware and operating system support
ensures that pages are loaded only when needed and that un-needed pages are
soon discarded. Jn principle. the author of a paged program need not be aware that
it will be paged (but this is often not true in practice if the author wishes the
program to run at maximum speed) Both code and data are paged. automatica lly.
In general. for single programs which re-use their workspace whenever possible.
one sees a ratio of program size plus workspace size to occupied memory size in
the region 1.5 to 3. One can always increase the ratio arbitrarily by integrating
several sequenlial ly used programs into a single image and by never re-using
workspace. But. fundamentally, paging rarely squeezes more than a quart-sized
program into a pint-sized memory. Of course. there are other benefits of paging.
but these are beyond the scope of this section.

In contrast, an overlaid program is broken uo into variable sized chunks (called
overlay segments) by the user. who also determines which of these chunks may
share the same area of memory. As the overlay system permits two code fragments
which share the same area of memory to ca ll one another and return successful ly
to the ca ller. this is merely a matter of performance However, if data is inc I uded in
an overlaid segment the situation becomes more complicated and the user has
more work to do. For example. it must be ensured that al l code which uses the data
resides in the same segment as the data. Furthermore. it must be acceptable that
the data is rc-inilialised every time the segment is re-loaded. Thus. in general. it is

295

When to use overlays

possible to overlay two work areas each of which is private to two distinct sets of
functions which are not simu ltaneously resident in memory. Overal l. it would be
unusual to overlay more than a quart-sized program into a pint-sized memory.
much as with paging (you may achieve a factor as high as four for code, bul
non-overlaid data wi II usually di I ute the overa ll factor substantially; it all depends
on the detai ls of your application).

A more detailed description of the low-level aspects of overlays is given in the
section Generating overlaid programs on page 140 of the Desktop Tools guide. If you are
especia lly interested in using overlays you may prefer to read that section next
Otherwise. if you are more interested in when to use overlays. please read on.

When to use overlays

296

Overlays work best when a program has severa l semi-independent parts. A good
model for purposes of understanding is to think of a special-purpose command
interpreter (Lhe rooL segment) which can invoke separate commands (overlay
segments) in response to user input. Consider, for example. a word processor
which consists of a text editor and a collection of printer drivers. It is clear that
each of the printer drivers can be overla id [you are unlikely to have more than one
printer); it may even be plausible to overlay each with the editor itself [you may not
be able to edit while printing- depending on how fast the printer goes and on how
much CPU time is required to drive it) Furthermore, if the time taken to load an
overlay segment can be tacked on to an interaction with the user. it is probable
that the program will feel liLLie slower Lhan if it were memory-resident. ln summary:
overlays work best if your program has many independent sub-functions.

On the other hand, if your program has many semi-independent parts. it may be
better to structure it as severa l independent programs, each ca lled from a control
program. By using the shared C library. each program can be relatively smal l. and
the Squeeze utility can be used to reduce the space taken by it on backing store by
nearly a factor of 2. (See the chapter Squeeze on page I 51 of the Desktop Tools guide
for deta ils). In contrast. overlay segments cannot be squeezed (though the root
program can be). So. if you can structure your application as independent.
squeezed programs it may take up less precious floppy disc space and load faster.
especial ly from a floppy disc. than if you structure it using overlays

If adopted. this strategy will force the independent programs to communicate via
files. Provided the data to be communicated has a simple structure this causes no
problems for the application; provided it is not too volum inous, use of the RAM
filing system (RamFS) is suggested as this is fast and requires no special
appl ication code in order to use it.

Overlays

So. overlays are most appropriate for applications which mantpulate very large
amounts of highly structured data- Computer Aided Design applications are
archetypal here- whereas multiple independent programs are most appropriate
for applications which manipulate relatively small amounts of simply structured
data and are otherwise dominated by large amounts of code

Naturally, if you are porting an existing application to RISC OS your view will be
coloured by whether or not it is already structured to use overlays If it ts. it will
probably be best to stick to using overlays, rather than attempting to split the
application up into semi-independent sub-applications

On the other hand. if you are writing an applicati on from scratch. you probably
want to ponder this question in more depth. For example. lo what other systems
willlhe application be targeted? Using multiple semi-independent applications
may work very nice ly under UNIX or OS/2 where the output of one process can be
piped inLo anolher, but less well under MS-DOS where use o l overlays is much
more Lhe norm.

c• ••••18U88L~Wa:a:&::W•• •••••••• • --•---=·• •••••w•• •w• •••we•••a

298

Part 5- Appendixes

299

300

Appendix A: Changes to the C compiler
¥8 W a W • * W &• W • W a a M W M M W W D 6 M 8 UJ W • W 6 • II S ,w: ~L&:a:a:!!M W + & ## 1IIJ aBC W ¥1 W IW a C W • • W W W il

A corn C/C++ is the fifth release of an Acorn C compiler product for RISC OS. and
./'\.. replaces the Acom Desktop C product The product has seen the following
significant changes since the last release

• The product has been merged with the Assembler.

• A C++ translator has been added to the product This is a port of Release 3.0 of
AT& T's CFront product.

• A C++ tool has been added to the product to provide an interface for C++
compilation that is similar to that provided by the CC tool for C compilation

• The compiler now produces smaller programs that use less memory and run
faster. This performance improvement is the result of many small
improvements to the compiler. such as :

• in-lining some commonly used small library functions

• introducing conditional iscd cond it ions

• using variable li fetime analysis to improve the allocation of variables to
registers.

• The Toolbox has been added to the product. to facilitate the design and coding
of consistent user interfaces for RISC OS desktop applications. See the
accompanying User lntetface Toolbox guide.

• RISC_OSLib has been removed from the product. as the Toolbox now provides
far superior facilities for writing RISC applications.

301

Ill II I

302

Appendix B: C errors and warnings

T his appendix gives a brief description of the intended purposes of error and
warning messages from the CC tool. along with some hints for interpreting

them. It then lists most of the common errors in alphabetical order. It is not a
complete list Since the messages are des1gned as far as possible to be
self-explanatory, some of the more simple common ones are not listed here.

Interpreting CC errors and warnings
The compiler can produce error and warning messages of severa l degrees of
severity. They are as follows:

• Warnings indicating curious. but legal. program constructs. or constructs that
are indicative of potential error.

• Non-serious errors that still allow code to be produced.

• Serious errors that may cause loss of code.

• Fatal errors that may stop the compiler from compiling;

• System errors that signal fau lts in the system itself.

Warn ings from CC are intended to provide a he lpful level of checking, in addition
to the level required by the ANSI standard On some other systems. such as UNIX.
separate facilities (like lint) are provided to perform this checking Warnings nag
program constructs that may indicate potential errors or those not recommended
because they may function differently on other machines. and hence hinder the
portability of code

Some warnings point out the use of facilities provided in this ANSI C
implementation which are above the minimum required by ANSI- for example.
use of externa l identifiers that are iden ti cal in the first six characters. which may
not be d ifferentiated by other systems which con form Lo the ANSI standard

Programs ported from other machines may cause large numbers of warning
messages from CC. which you can disable with the Suppress warnings option (see
page 34 for more information).

You can also enable additional checks with the CC and C++ Features option This
is best done in the final stages of a pro1cct. and will help you to produce
high-quality software

303

Warnings

Warnings

304

Errors and serious errors collectively respond to ANSI 'diagnostics·. whether an
error is serious or not refiects the compiler's view. not yours. or that of the ANSI
committee

Alter issuing a warning. non-serious. or serious error. CC continues compil ing.
somcti mes producing more such messages in the process. Com pi I at ion of C by CC
can be thought of as a pipeline process. starting with preprocessing. syntax
analysis. then semantic analysis (when the structure of a portion of code IS

analysed) When syntax errors inC are encountered by CC. the compiler can often
guess what the error was correct it. and continue When semantic errors are found.
portions of your code are often ignored before continuing. and serious error
messages are reported.

Unfortunately. the compact and powerful nature of C leads to a high proportion of
semantic errors. Ignoring portions of your code is likely to make subsequen t
portions incorrect. so one serious error can often sta rt a cascade of error messages.
Often. therefore. it is sensible to ignore a set of error messages following a serious
error message

If the compiler produces any message more serious than a warning, it will set a bad
return code. usually terminating any 'make· of which it is a part in the process Any
serious error will cause the output object file to be deleted. fatal and system errors
cause immed1ate termination of compilation. with loss of the object file and bad
return code set.

Future releases of the compiler may distinguish further forms of error. or produce
slightly different forms of wording.

In pee mode. constructs that are erroneous in ANSI mode are reported even
though legal in pee mode.

Warning messages indicate legal but curious C programs. or possibly unintended
constructs (unless warnings are suppressed). On detection of such a condition. the
compiler issues a warning message. then continues compilation.

C errors and warnings

~ ---------- ... -... :II

Warning messages

'&' unnecessary for function or array xx

This is a reminder that if xx is defined as char xx [10) then xx a I ready has a pointer
type. There is a similar reminder for function names too. Example:

static char mesg(] = "hello\n";
int main ()
{

char *P = &mesg; /• mesg is already compatible with char * •!

actual type 'xx' mismatches format '%x'

A type error in a printf or scanf format string. Example:

int i;
printf("%s\n", i); /* %s need char* not int */

ANSI 'xx' trigraph for 'x' found- was this intended?

This helps to avoid inadvertent use of ANSI trigraphs. Example

printf("Type ??/!!: "); /*"??!"is trigraph for"\" •!

argument and old-style parameter mismatch : xx

A function with a non-ANSI declaration has been called using a parameter of a
wrong data type. Example:

int fnl(a , b)
int a;
int b;

return a * b;

int main()

int l; float m;
fnl(l , m); I* m should be 'int' */

305

Warnings

306

character sequence / * inside comment

You cannot nest comments inC Example

!• comment out func() f o r now ...
!• func() returns a random number •!
int func(void)

return i;

•I

Dangling 'else ' indicates possible error

This hints that you may have mismatched your i f s and e l ses. Remember an
els e always refers to the most recent unmatched i f . Use braces to avoid
ambiguity. Example:

if (a)
if (b)

return 1 ·
else if (c)
return 2;

else I* this belongs to the if (a). Or does it?*/
return 3;

Deprecated declaration of xx() - give arg types

A feature of the ANSI standard is that argument types should be given in function
declarations (prototypes). 'No arguments· is indicated by void Example:

extern int func(); !• should have 'void' in the parentheses*/

extern clash xx , xx clash (ANSI 6 char monocase)

Using compi ler Feature option e. it was found that two external names were not
distinct in the fi rst six characters. Some l inkers provide only six significant
characters in their symbol table. Example:

extern double function! (int i);
extern char • function2 (long l);

C errors and warnings

----------U:nl_iir;_.,.i/111WIIIni'Jillti/111Wut:ll-llriW-MIIr!Wut:liiWIIr!Wut:llllrUIIIII".IWII:.liiii&::'II-IICIIIr.llll!:--~--r!IMII:-IEJIOII'•.-.-.a-.: :a1

extern 'main ' needs to be ' int' function

This is a reminder that main () is expected to return an integer. Example:

void main()
{

extern xx not declared in header

Compiling with Feature h, an external object was discovered which was not
declared in any included header file.

floating point constant overflow

This is typically caused by a divis ion by zero in a floating point constant expression
evaluated at compile time. Example:

#define lim 1
#define eps 0.01
static float a= eps/(lim- 1); !• lim-1 y i elds 0 •I

floating to integral conve rsion failed

A cast (possibly implicit) of a float ing point constant to an integer failed at compile
time. Example

static int i = (int) 1 . 0e20; I* INT_~~x is about 2e10 •/

formal parameter ' xx ' not declared - ' int ' assumed

The declaration of a function parameter is missing. Example:

int func(a)
/•a should be declared here or within the parentheses•/

Format requires nn paramete rs, but mm given

Mismatch between a prin tf or scanf format string and its other arguments.
Example

printf("%d, %d\n",1); !• should be t\vO ints •!

function xx declared but not us ed

When compiling with Feature v. the function xx was declared but not used within
the source fi I e.

307

Warnings

308

Illegal format conversion '%x'

Indicates an illegal conversion implied by a printf or scanf format string.
Example

printf ("%w\n" , l0); I* no such thing as %w *I

implicit narrowing cast : xx

An arithmetic operation or bit manipulation is attempted involving assignment
from one data type to another. where the size of the latter is naturally smaller than
that of the ass1gned value. Example

double d = 1 . 0 ; long 1 = 2L; int i s 3 ;
i =- d * i;
i = 3 ;
i = & - 1;

implicit return in non- void function

A non-void function may exit without using a return statement . but wont return a
meaningful resu lt. Example:

int func(int a)

int b•a*lO;
... I * no return <expr> statement *I

incomplete format string

A mistake in a printf or scanf fo rmat string. Example:

printf("Score was %d %" ,score); I* 2nd% should be%% •I

' int xx() ' assumed- 'void ' intended?

If the definition of a function omi ts its return type- it defaults to int You should
be expl icit about the type, using void if the function doesn't return a resu lt.
Example:

main()
{

C errors and warnings

a&*WMWW¥*••••••••w•s•••wwv • <v •• -
inventing 'extern int xx();'

The declaration of a function is missing. Example:

pr intf ("Type your name: ");
!• forgot to #include <stdio.h> */

lower precision in wider context: xx

An arithmetic operation or bit manipulation is attempted involving assignment
from int, short or char to long Example:

long 1 = lL; int i = 2; short j = 3;
1 i & j;
1 = i 5;
1 = i • j;

One circumstance in which this causes problems is when code like

long f(int x){return l<<x;}

(which fails if int has 16 bitsl is moved to machines such as the IBM PC

No side effect in void context: ' op'

An expression which does not yield any side effect was evaluated; it will have no
effect at run-time. Example

a+b;

no type checking of enum in this compiler

Compiling with Feature x. an enum declaration was found. and this message
refers to the ANSI stipu lation that enum va lues be integers, less strictly typed than
in some earlier d ialects of C.

Non-ANSI #include <xx>

A header file has been #included which is not defined in the ANSI standard.< >
should be replaced by " ".

non-portable- not 1 char in ' xx

Assigning character constants containing more than one character to an int will
produce non-portable results. Example:

static int exitCode = 'ABEX';

309

Warnings

310

non-value return in a non-void function

The expression was omitted from a return statement in a function which was
defined with a non-void return Lype. l:.xample:

int func(int a)

int b•a*lO;

return; /* no <expr> •!

odd unsigned comparison with 0 : xx

An attempt has been made to determine whether an unsigned variable i!:. negative.
Example:

unsigned u , v;
if (u < 0) u • u • v;
if (u >• 0) u • u I v;

Old-style function: xx

Compiling with Feature o, it was noted that the code contains a non ANSI
function declaration. Example:

void fn2(a , b)

int.. a;
int b;
{ b = a;

omitting trailing '\0' for char[nn]

The character array being equated to a string is one character too short for the
whole string. so the trailing zero 1s bemg omitted Example

static char mesg[l4) = "(C)l988 Acorn\n";/* needs 15 */

repeated definition of #define macro xx

When com pi ling with Feature h. a macro has been repeated ly #defined to take the
same value

C errors and warnings

-- ...
shift by nn illegal in ANSI c

This is given for negative constant shifts or sh ifts greater than 31. On the ARM. the
bottom byte of the number given is used, ie it is treated as (unsigned char)
nn. NB: negative shifts are not treated as positive shifts in the other di rection.
Example

printf("%d\n",l<<-2);

'short' slower than 'int' on this machine (see manual)

For speed you are advised to use ints rather than shorts where possible. This is
because of the overhead of performing implicit casts from short to int in
expression eva luation. However. shorts are half the size of ints. so arrays of
shorts can be usefu l. Example

short i,j; !• quicker to use ints */

spurious {} around scalar initialiser

Braces are only required around structure and array initialises. Example:

static int i = {INIT_I}; /* don't need braces •!

static xx declared but not used

A static variable was declared in a file but never used in it. It is therefore
redundant.

Unrecognised #pragma (no ' ' or unknown word)

#pragma d irectives are of the form

#pragma -xd
or
#pragma long_spelling

where xis a Jetter and dis an optiona l digit. These messages warn against unknown
letters and missing minus signs.

use of 'op' in condition context

Warns of such possible errors as= and not== in an if or looping statement.
Example:

if (a=b) {

311

Non-serious errors

variable xx declared but not used

This refers to an automatic variable which was declared at the start of a block but
never used within that block It is therefore redundant. Example.

int func(int p)

int a; !• this is never used •!
return p*lOO;

xx may be used before being set

Compiling with Feature a, an automatic variable is found to have been used
before any va lue has been assigned to it.

xx treated as xxul in 32- bit implementation

This message warns of two·s complement arithmetic's dependence on ass1gning
negative constants to unsigned ints, and it explams that ints and long
int s are both 32 bits.

Non-serious errors

312

These are errors which will allow ·working code to be produced- they will not
produce loss of code On detection of such an error the compiler issues an error
message, if enabled, then continues compilation.

',' (not '; ') separates formal parameters

Incorrect punctuation between function parameters lxample:

extern int func(int a;int b);

ANSI C does not support ' long float'

Th is used to be a synonym for double, but is not allowed in ANSI C.

ancient form of initialis ation, use '='

An obsolete syntax for initialisation was used. or incorrectly nested brackets have
been found. Example:

int i(l}; I• use i nt i =l ; •I

array [OJ found

C errors and warnings ·--
The minimum subscript count al lowed is I . (Remember that the subscripts go from
0- n-1.) Example:

static int a[O];

array of xx illegal assuming pointer

Illegal objects have been declared to occupy an array. Examples:

int fn2[5J();
void v[lOJ;

I• array of functions */

!• array of voids •!

assignment to 'const' object 'xx'

You can't assign to objects declared as const. Example

const int ic = 42; !• initialisation ok •!
ic = 69; I* can't change it now */

comparison 'op' of pointer and int:
literal 0 (for == and !=) is the only legal case

You cannot use the comparison operators between an integer and a pointer type
As the message implies. you can on ly check for a pointer being (not) equa l to NULL

(int 0). Example:

int i,j,*ip;
j = i>ip; /* can't compare an int and an int • •!

declaration with no effect

The compiler detected what appeared to be a declaration statement. but which
resulted in no store being allocated. This may imply that a data type name was
omitted.

313

Non-serious errors

314

diffe ring pointer types: ' xx '

An illegal implicit type cast was detected in a comparison operation between two
pointers of d ifferent types. Example

int •ip;
char •cp;
printf("\d\n", ip==cp); I* can't compare these *I

differing redefinition of l define macro xx

#define gives a definition contradicting thdt already assigned to the named macro

ellipsis (...)cannot be only parameter

Although C dliows variable length argument lists. the· ••• · parameter cannot
stand alone in this function declo ration . Example:

void fnl(...)

expected 'xx' or ' x ' - inserted ' x ' before ' yy '

Often caused by omitting a terminating symbol in a statement when the compi ler
is able to insert this symbol for you. and then to recover. Example:

int f(int j)
{

return j;

int main()
{

int i•f(lO;
return i;

I* ')'omitted here *I

formal name missing in function definition

This error occurs when a comma in a funct ion definition Jed the compiler to
suspect a further forma l parameter was going to foll ow. but none did. Example

int a(int b,) I• missing parameter*/

C errors and warnings ..
function prototype formal ' xx' needs type or class- 'int'
assumed

A formal parameter in a function prototype was not given a type or class. It needs
at least one of these (register being the only allowed class). Example

void func(a); I* I mean int a or perhaps register a •!

function returning xx illegal - assuming pointer

A function apparently intends to return an illegal object. Example:

int fn3()[I
{

int list[3 J
return list;

I* hoping to return an array •I

{1,2,3};

function xx may not be initialised - assuming function
pointer

A function is not a variable, so cannot be initialised. As an attempt to initia l ise xx
has been made. xx is trealed as of type function * Example:

extern int func(void);
static int fn() = func; /* the compiler will use

static int (*fn)() = func; instead *I

<int> op <pointer> treated as <int> op (int)<pointer>

Warns of an i llegal implicit cast within an expression. Typically op is an operator
which has no business being used on pointers anyway, such as I or dyadic*.
Example:

int i, *ip;
i = i I ip; /* bitwise-or on a pointer?! *I

junk at end of #xx line - ignored

The xx is either else or endif. These directives shou ld not have anything
following them on the line. Example:

I• text after the #else should be a comment •!
#else if it isn't defined

Non-serious errors

....
'

L 0
••• o needs exactly 1 wide character

The wchar_ t declaration of a wide character names an identifier comprising other
than one character. Example:

wchar t we • L'abc ';

linkage disagreement for 0 XX
0 - treated as 0 XX 0

There was a linkage type disagreement for declarations, ega function was declared
as extern then defined later in the tile as static. Example

int func(int a); !• compiler assumes extern here •!

static func(int a) I• but told static here •/

more than 4 chars in character constant

A character constant of more than four characters cannot be assigned to a 32 bit
int Example

inti • '12345' ; !• more than four chars*/

no chars in character constant 0 o

At least one character shou ld appear in a cha racter constant. The empty constant
is taken as zero Example:

inti= ''; I* less than one char . \0. *I

objects that have been cast are not !-values

The programmer tried to use a cast expression as an 1-value. Example:

char •p;
*((int *)p)•lO; !• (int *)pis NOT an 1-value • /

omitted <type> before formal declarator- ointo assumed

This is given in a formal parameter declaration where a type modifier is given but
no base type Example:

int func(*a); /• a is a pointer, but to what?*/

C errors and warnings

m=zm ·= ==·-·.a=--

' op': cast between function pointer and non-function object

Casts between function and object pointers can be very dangerous' One possibly
val id (but still very suspect) use is in casting an array of int into which machine
code has been loaded into a function pointer Example:

static int mcArray[lOOJ;
/*pointer to function returning void*/
typedef void (*pfv)(void);

((pfv)mcArray)(); /• convert to fn type a nd apply •/

' op': implicit cast of non-0 int to pointer

Zero. equal to a NULL pointer, is the only int which can be legal ly implicitly cast
to a pointer type. Example:

int i, *ip;
ip = i; !• only the constant int 0 can be implicitly

cast to a pointer type •!

' op ' : implicit cast of pointer to non-equal pointer

An illega l impl icit cast has been detected between two different pointer types. The
type casting must be made expl icit to escape this error. Example

int •ip;
char •cp;
ip = cp; /• differing pointer types */

' op ': implicit cast of pointer to ' int '

An i llegal impl icit cast has been detected between an integer and a pointer Such
casts must be made expl icit ly. Example

int i, *ip ;
i = ip; !• pointer must be cast explicitly •!

317

Non-serious errors

318

overlarge escape ' \\xxxx ' treated as '\\xxx '

A hexadecima l escape sequence is too large. Example:

int novalue{)
{

if (seize) return '\xfff';
e l se return '\xff';

!• \xfff' too l arge */

overlarge escape '\\x ' treated as '\\x'

An octa l escape sequence is too large. Example:

int novalue()
{

if (huit) return '\777';
else return '\77' ;

I* \777 too large •/

<pointer> op <int> treated as (int)<pointer> op <int>

The on ly legal operators allowed in this context are+ and - .

prototype and old-style parameters mixed

Use has been made of both the ANSI style function/definition (including a type
name for formal parameters m a function's heading) and pee style parameters lists.
Example.

void fn4 (a, int b)
int a;

a = b;

'register' attribute for 'xx' ignored when address taken

Addresses of register variables cannot be calculated. so an address being taken of
a variable with a register sto rage class causes that attribute to be dropped.
Example:

register int i, •ip;
ip = &i; I* & forces i to lose its register attribute •/

C errors and warnings

return <expr> illegal for void function

A function declared as void must not return with an expression Example

void a(void)

return 0;

size of 'void' required - treated as 1

This indicates an attempt to do pointer arithmetic on a void *. probably
indicating an error. Example:

void •vp;
vp++; I* how many bytes to increment by ? •!

size of a (] array required- treated as [1]

If an array is declared as having an empty first subscript size. the compiler cannot
calculate the array's size. It therefore assumes the first subscript limit to be I if
necessary This is unlikely to be helpful.

extern int array[J[lOJ;
static int s = sizeof(array); /*can't determine this*/

sizeof <bit field> illegal - sizeof(int) assumed

Bit fields do not necessarily occupy an integra l number of bytes but they are always
parts of an int. so an attempt to take the size of a bitfield will return
sizeof (int). Example

struct s {

} ;

int exp : B;
int mant : 23;
int s : 1;

int main(void)
{

struct s st;
inti= sizeof(st.exp); /*can't obtain this in bytes*/

319

Non-serious errors

320

Small (single precision) floating value converted to 0.0
Small floating point value converted to 0.0

1\ floating point constant was so sma ll t hal it had to be converted to 0.0 example :

static floaL f • l.OOOle-38- l.Oe-38; I* le-42 too small for float •/

Spurious #eli£ ignored
Spurious #else ignored
Spurious #endif ignored

One of these three directives was encountered outside any #if or #ifdef scope.
Example

#if defined sym

#end if
#else I* lhis one is spurious */

static function xx not defined - treated as extern

A prototype declares the function to be static. but the function itself is absent from
this compilation unit.

string initialiser longer than char [nn]

An attempt was made to initialise a character array with a string longer I han the
array. Example

static char str[lOJ • "1234567891234";

struct component xx may not be function
pointer

assuming function

A variable such as a structure component cannot be declared to have type
function, on ly function * . Example

struct s {
int fn();l• compiler will use int (*fn)(); •I
char c;

} ;

n me

C errors and warnings ... n· m ::-.

type or class needed (except in function definition) - int
assumed

You can't declare a function or variable with neither a return type nor a storage
class. One of these must be present Examples:

func(void); /*need, eg, int or static •/
x;

Undeclared name , inventing 'extern int xx

The name xx was undeclared, so the default type exte rn int was used. This may
produce later spurious errors. but compilation continues. Example:

int main(void) {
int i = j; /*j has not been previously declared•/

unprintable character xx found - ignored

An unrecognised character was found embedded in your source - this cou ld be file
corruption. so back up your sources! Note that ·unprintable character' means any
non-whitespace. non-printable character.

variable xx may not be function - assuming function pointer

A variable cannot be declared to have type function, on ly function *
Example

int main(void)
{

auto void fn(void); !• treated as void (*fn)(void);*/

xx may not have whitespace in it

Tokens such as the compound assignment operators(+= etc) may not have
embedded wh itespace characters in them. Example:

int i;

i + = 4; !• space not allowed between + and *I

321

Serious errors

Serious errors

322

These are errors which wil l cause loss of generated code On detection of such an
error. the compiler will attempt to continue and produce further diagnostic
messages. which are sometimes useful but will delete the partly produced ob1ect
file

' .. . 'must have exactly 3 dots

This is caused by a mistake in a function prototype where a variable number of
arguments is spec1fied Example

extern int printf(const char *format,); /*one . too many*/

' { ' of function body expected - found ' xx'

This is produced when the first character after the formal parameter declarations of
a function is not the { of the function body Example:

int func(a)
int a;

if (a) ... I* omitted the { •/

'{ ' or <identifier> expected after 'xx ' , but found ' yy '

xx is typically struct or union which must be followed either by the tag
identifier or the open brace of the field list Example:

struct *fred; I* Missed out the tag id • /

' xx' variables may not b e initialised

A variable is of an Inappropriate cle~ss for initialisation. Example·

i nt main()
(

extern int n•l;
return 1;

C errors and warnings

······----··················-·········-···•s=--------~- ---
op' : cast to non-equal ' xx ' illegal
op' : illegal cast of ' xx ' to pointer
op' : illegal cast to ' xx'

These errors report various illega l casting operations. Examples

struct s {
int a,b;

} ;

struct t {
float ab;

} ;

int main(void)

int i ;
struct s sl;
struct t s2;

I* = : illegal cast to 'int' *I
i = sl;

I* = : illegal cast to non-equal 'struct' *I
sl = s2;

I* <cast>: illegal cast of 'struct' to pointer •I
i = *(int *) sl;

I* <cast> : illegal cast to ' int' *I
i = (int) s2 ;

op ' : illegal use in pointer initialiser

I Static) pointer initia l isers musl eva luate to a pointer or a pointer constant plus or
minus an integer constant. This error is often accompanied by others. Example

extern int count;
static int *ip = &count*2;

{} must have 1 element to initialise scalar

When a scalar (integer or float ing type) is initialised. the expression does not have
to be enclosed in braces. but if they are present. on ly one expression may be pul
between them. Example:

static int i = {1,2}; I* wh ich one to use? *I

Array size nn illegal - 1 assumed

Arrays have a maximum d imension of Oxffffff. Example:

static char d ict[OxlOOOOOO]; I• Too big •I

323

Serious errors

•••

324

............ ---- =--·
attempt to apply a non-function

The function ca ll operator () was used after an expression which did not yield a
pointer to function type. Example

int i;
i ();

Bit fields do not have addresses

-

Bitfields do not necessarily lie on addressable byte boundaries. so the & operator
cannot be used with them. Example

struct s {
int hl,h2 : 13;

} ;
int main(void)

struct s sl;
short *sp = &sl.h2; !• can't take & of bit field •!

Bit size nn illegal - 1 assumed

Bitfields have a maximum permitted width of 32 bits as they must fit in a single
integer Example:

struct s {

} ;

int fl 40; !• This one is too big */

int f2 B;

' break' not in loop or switch - ignored

A break statement was found which was not inside a for. while or do loop or
switch. This might be caused by an extra }, closing the statement prematurely.
Example:

int main(int argc)

if (argc == 1)
break;

..... C errors and warnings

' case ' not in switch - ignored

A case label was found which was not inside a switch statement. This might be
caused by an extra}. closing the s witch statement prematurely. Example

void fn(void)

case '*': return;

<command> expected but found a ' op '

This error occurs when a [binary) operator is found where a statement or
side-effect expression would be expected. Example:

if (a) /10; I* mis- placed) perhaps? */

' continue ' not in loop - ignored

A continue statement was found which was not inside a for. wh i le or do loop.
This might be caused by an extra). closing the loop statement prematurely.
Example

while (cc)
if (dd)

if (ee)

I* intended a { here •/
error() ;

/*this closes the while */

continue;

'default' not in switch - ignored

A default label was found wh ich was not inside a switch statement. This might
be caused by an extra}, closing the s witch statement prematurely. Example:

switch (n) {
case 0:

return fn(n);
case 1: if (cc)

return -1;
else

break;
} /• spurious } closes the switch •/
default:

error();

325

Serious errors

326

-- ------
duplicated case constant: nn

The case label whose value is nn was found more than once in a switch
statement. Note that nn is printed as a decimal integer regardless of the form the
expression took in the source. Example:

switch (n) {
case

case

duplicate 'default' case ignored

Two cases in a single switch statement were labelled default. Example

switch (n) {
default:

default:

duplicate definition of 'struct' tag 'xx

There are duplicate definitions of the type struct xx { ••• } , . Example

s truct s { int i,j;};
struct s {float a,b;};

duplicate definition of 'union' tag 'xx

There are duplicate definitions of the type union xx { ••• } , . Example

union u {inti; char c[4);};
union u {doubled; char c[S);};

duplicate type specification of formal parameter ' xx'

A formal function parameter had its type declared twice, once in the argument list
and once after it. Example

void fn(int i)
int i ; /* this one is redundant */

C errors and warnings

waaaaaaa•a•••••••aa•••••••••••wr =~A•

EOF in comment
EOF in string
EOF in string escape

These all refer to unexpected occurrences of the end of the source fi le.

Expected <identifier> after 'xx' but found ' xx
expected 'xx' - inserted before 'yy'

Th is typica ll y occurs when a terminating semi-colon has been omitted before a).
(Common amongst Pasca l programmers) Another case is the omission of a closing
bracket of a parenthesised expression Examples:

int fn(int a, int b, int c)

int d = a*(b+c;
return d

I* missing */
!• missing •/

Expecting <declarator> or <type>, but found 'xx'

xx is typically a punctuation character found where a variable or function
declaration or definition would be expected (at the top level). Example

static int i = HAX;+l; !• spurious ; ends expression •!

<expression> expected but found 'op'

Simi lar to above. An operator was found where an operand might reasonably be
expected. Example:

func(>>lO); /• missing l eft hand side of>> *I

grossly over-long floating point number

Only a certa in number of decimal digits are needed to specify a noating point
number to the accuracy that it can be stored to. Th is number of digits was
exceeded by an unreasonable amount.

grossly over-long number

A constant has an excessive number of leading zeros. not affecting its value.

327

Serious errors

328

••••••••••

hex digit needed after Ox or OX

Hexadecimal constants must have at least one digit from the set 0-9 . a- f. A-F
following the Ox. Example:

int i = Oxg; I• illegal hex char *I

-

< identifier> expected but found ' xx ' in 'enum' definition

An unexpected Loken was found in the l ist of identifiers within the braces of an
enum definit ion Example

enum colour {red, green, blue,;}; I• spurious ; *I

identifier (xx) found in <abstract declarator> - ignored

The sizeof () funct ion and cast expressions requ ire abstract declarators. ie types
without an identifier name. Th is error is given when an identifier is found in such a
situation. Examples:

i (int j) ip; I* trying to cast to integer •I
1 = sizeof(char str[lO)); I• probably just mean sizeof(str) •I

illegal bit field type 'xx ' - ' int' assumed

lnt (signed or unsigned! is the on ly va l id bitfield type in ANSI-conforming
implementations. Example:

struct s {char a : 4; char b : 4;};

illegal in case expression (ignored): xx
illegal in constant expression: xx
illegal in floating type initialiser : xx

All of these errors occur when a constant is needed at compile time but a variable
expression was found.

illegal in 1-value : ' enum' constant ' xx'

An incorrect attempt was made to assign to an enum constant Th is cou ld be
caused by misspell ing an enum or variable identifier Example:

enum col {red, green, bl ue};
int fn()

int read;
red = 10;

C errors and warnings

illegal in the context of an 1-value: ' xx'
illegal in lvalue: function or array ' xx '

An rncorrect attempt was made to assign to xx, where the object in question is not
assignable (an 1-value). You can't. for example. assign to an array name or a
function name Examples:

int a,b,c;
a ? b : c = 10;

if (a)

b = 10;

e lse
c = 10;

o r. in the same context.

*(a ? &b: &c) 10;

I* ?: can't yield 1-values . •I
I * use this instead *I

illegal in static integral type initialiser: xx

A constant was needed at compile time but a suitable expression wasn't found

illegal types for operands : 'op'

An operation was attempted using operands which are unsuitable for the operator
in quest1on. Examples:

struct {int a,b;} s;
int i ;
i •s; I* can't indirect through a struct *I
s ~ s+s ; I * can't add structs *I

incomplete type at tentative declaration of 'xx'

An incomplete non-static tentative definition has not been completed by the end
o f the compilation unit. Example

i nl i ncomplete();

I• s hould be completed with a declaration like: *I
I• int incomplete(SOMESIZE); * /

329

Serious errors

330

•-:.-•••-MA•••aw:•••s-a:E-=si II a•IJIIIIWWUW#XM*"*M***** 8 ••wwe

junk after #if <expression>
junk after #include "xx
junk after #include <xx>

None of these directives should have any other non-whitespace characters
fol lowing the expression/filename. Example:

#include <stdio.h> this isn' t allowed

label ' xx' has not been set

An attempt has been made to use a label that has not been declared in the current
scope. after having been referenced in a go to statement. Example:

int main(void)
{

goto end;

misplaced '{' at top level - ignoring block

{}blocks can on ly occur within function definitions. Example:

!• need a function name here •!

int i;

misplaced 'else ' ignored

An else with no match ing if was found. Example:

if (CC)

else

i = 1;
=2 ;

k = 3;

!• should have used { } •/

misplaced preprocessor character 'xx '

Usually a typing error: one of the characters used by the preprocessor was detected
out of context. Example:

char #str(] = "string"; !• should be char •str [] •/

missing #endif at EOF

A #if or #ifdef was still active at end of the source fi le These directives must
always be matched with a #endif.

C errors and warnings

missing '"' in pre-processor command line

A I me such as #include "name has the second " m1ssmg

missing ')' after xx(... on line nn

The r.losmg bracket (or comma separating the arguments) or a macro call was
omitted Example:

#define rdch (p) {c h=*p++;}

r dch(p / * missing) • !

missing ',' or ')' after #define xx(...

One ot the above characters was omitted after an identi fier in the macro parameter
list Example

#define r dch(p {ch = *p++;}

missing '<' or '"' after #include

A # i nclude fi lename shou ld be within either double quotes or angled brackets

missing hex digit(s) after \x

The string escape \ x is intended to be used to msert characters m a string using
their hexadecimal values. but was incorrectly used here It should be rollowed by
between one and three hexadecima l digits. Example

print f("\ xxx/"); I * probabl y meant "\\xxx/" •I

missing identifier after #define
missing identifier after #ifdef
missing identifier after #undef

each of these directives shou ld be followed by a valid C identifier. Example

#define @ at

missing parameter name in #define xx(...

No identifier was found after a , in a macro pa rameter list Example:

#define rdch(p ,) {ch=*p++; }

331

Serious errors

332

no ') ' after #if defined(...

The de fined operator expects an identifier. optionally enclosed within brackets.
Example:

#if defined(debug

no identifier after #if defined

See above.

non static address 'xx' in pointer initialiser

An attempt was made to take the address of an automatic variable in an expression
used to initia l ise a static pointer. Such addresses are not known at
compile-time Example:

int i;
static int *ip = &i; /*&i not known to compiler*/

non-formal 'xx ' in parameter-type-specifier

A parameter name used to declare the parameter types did not actually occur in
Lhe parameter list of the function Example:

void fn(a)
int a,b;

number nn too large for 32-bit implementation

An integer constant was found wh ich was too large to fit in a 32 bit int. Example

static int mask = OxSOOOOOOOO; /*OxBOOOOOOO intended?*/

objects or arrays of type void are illegal

void is not a va l id data type.

C errors and warnings

overlarge floating point value found
overlarge (single precision) floating point value found

A noaling point constant has been found which 1s so large that 1t will not fit in a
floating point variable Examples

float f ~ le40; /* largest is approx le38 for float •/
double d ~ le310; /* and le308 for double •/

quote (" or ') inserted before newline

Slrings and character constants are not allowed to conla in unescaped newline
characlers Use \<nl> to al low strings to span l ines. Example

prinlf("Total =

re-using 'struct' tag 'xx' as 'union' tag

There arc con fl icting defin it ions of the type s t ruct x x { ... } ; and union xx
{ ••• } ; Structure and union tags cu rrently share the same name-space in C.
l:.xample

struct s {int a,b;};

union s (int a; doubled;};

re - using ' union ' tag ' xx ' as ' struct' tag

As above

size of struct ' xx' needed but not yet defined

An operation requires knowledge of the siz.e of the struct. but this was not defined.
This error is l ikely to accompany others. Example:

struct s ;
struct s *sp ;
sp++;

!• forward declaration •/
! • pointer to s */
!• need size for inc operation •I

size of union ' xx' needed but not yet defined

See above

333

Serious errors

334

storage class ' xx ' incompatible with ' xx ' -ignored

An attempt was made to declare a variable with conflicting storage classes.
Example:

static auto int i; /• contradiction in terms */

storage class ' xx ' not permitted in context xx - ignored

An attempt was made to declare a variable whose storage class conflicted with its
position in the program. Examples

register int i;
void fn(a)
static inl a;

!• can't have top-level regs •/

!• or static parameters *I

struct ' xx ' must be defined for (static) variable
declaration

Before you can declare a static structure variable. that structure type must have
been defined. This is so the compiler knows how much storage to reserve for it.
Examples

static struct s sl;
struct t;
static struct t tl;

I* s not defined •I

I* t not defined *I

struct/union ' xx ' not yet defined- cannot be selected from

The structure or union type used as the left operand of a • or--+ operator has not
yet been defined so the field names are not known Example·

struct s sl;
sl.a 12 ;

I* forward reference •I
I* don't know field names yet *I

C errors and warnings

• ·------- w

too few arguments to macro xx(... on line nn
too many arguments to macro xx(... on line nn

The number of arguments used in the invocation of a macro must match exactly
the number used when it was defined. Example:

#define rdch(ch,p) while((ch = *p++)==' ');

rdch(ptr);/* need ptr and ch *I

too many initialisers in {} for aggregate

The list of constants in a static array or structu re initialiser exceeded the number of
elements/fields for the type involved. Example:

static int powers[8) = {0,1,2,4,8,16,32,64,128};

type ' xx' inconsistent with 'xx'
type disagreement for 'xx'

Conflicting types were encountered in function declaration (prototype) and its
definition. Example:

void fn(int);

int fn(int a)

A pernicious error of this type is caused by mixing ANSI and old-style function
declarations. Example:

int f(char x);
int f(x)char x ;

typedef name 'xx' used in expression context

A typedef name was used as a variable name. Example

typedef char flag;

int i flag;

335

Serious errors

336

undefined struct/ union ' xx ' cannot be member

A struct/union not already defined cannot be a member of another
struct/union. In particu lar this means that a struct /union canno t be a
member of itself: use pointers for this. Example:

struct sl {
struct s2 type; I* s2 not defined yet *I
int count;

} ;

unknown preprocessor directive : #xx

The identifier following a# did not corre5pond to any of the recognised
pre-processor directives. Example

#asm I* not an ANSI directive *I

uninitialised static [] arrays illegal

Static [1 arrays must be initialised to allow the compiler to determme their size
Example

static char str(); I* needs {} initialiser *I

union ' xx ' must be defined for (static) variable declaration

Before you can declare a static un ion variable, that union type must have been
defined Example:

static union u ul; I• compiler can't ascertain size *I

'while ' expected after ' do ' - found ' xx '

The syntax of the do statement is do statement while (expression)
Example·

do I* should put these statements in {} *I
1 ~ inputLine();
err= processLine(l);l•fi nds err , not while •I

while (!err);

Fatal errors

C errors and warnings

These are causes for the compi ler to give up compilation. Error messages are
issued and the compiler stops.

couldn ' t create object file 'file '

The compi ler was unable to open or write to the specified output code file, perhaps
because it was locked or the o directory does not exist.

macro args too long

Grossly over-long macro arguments, possibly as a result of some other error.

macro expansion buffer overflow

Grossly over-complicated macros were used, possibly as a result of some other
error.

no store left
out of store (in cc_ alloc)

The compiler has run out of memory- either shorten your source programs, or free
some RAM by, for example, quitting some other appl ications.

If running under the desktop, you can use the Task Manager to increase your
wimps lot size.

too many errors

More than I 00 serious errors were detected.

too many file names

An attempt was made to compi le too many files at once. 25 is the maximum that
will be accepted.

337

System errors

System errors

338

There are some additiona l error messages that can be generated by the compiler if
it detects errors in the compiler itself It is very unusual to encounter this type of
error If you do. note the circumstances under which the error was caused and
contact your Acorn supplier.

These error messages all look like this:

* The compiler has detected an internal inconsistency. This can occur *
* because it has run out of a vital resource such as memory or disk
* space or because there is a fault in it . If you cannot easily alter
• your program to avoid causing this rare failure, please contact your *
* Acorn dealer. The dealer may be able to help you immediately and will *
* be able to report a suspected compiler fault to Acorn Computers.

.................... .,... ---~:\11'-il'f""1'1fl/::11111~¥~-llll:~--=------------

Appendix C: C++ errors and warnings
.. ------ ,

T his appendix contains the text and explanation for all ·not implemented'
messages produced by the C++ Language System Release 3.0. They are listed

here in alphabetical order.

Each message is preceded by a file name. a line number, and the text ·not
implemented' A complete error has this syntax

"file", linen: not implemented: message

where the message is as used in the headings below. The line number is usually the
line on which a problem has been diagnosed.

A ·not implemented' message is issued when Release 3.0 encounters a legal
construct for which it cannot generate code. Because code is not generated. ·not
implemented' messages cause the cc command to fail. and the program is not
linked. Release 3.0 does. however. attempt to examine the rest of your program for
other errors.

'Not implemented' messages

actual parameter expression of type string literal

A template is instantiated with a sting literal actual argument:

template <char* s> struct S {/* ... */};

S<"hello world"> svar;

"file", line 3: not implemented: actual parameter expression of type string
literal

address of bound member as actual template argument

A template is instantiated with the address of a class member bound to an actua l
class object:

template <int *pi> class x {};
class y { public: int i; b;

x< &b.i > xi;

" file", line 4: not implemented: address of bound member (& ::b . y::i) as
actual template argument

339

'Not implemented' messages

340

& of op

This message should not be produced.

1st operand of .* too complicated

The first operand of a function call expression involves a pointer to a member
function and is an expression that may have side effects or may require a
temporary.

struct S {virtual int f(); };
int (S::•pmf)() • &S::£;
s *f();
int i = (f()->*pmf)();

"file", line 5: not implemented : 1st operand of • too complicated

2nd operand of .* too complicated

The second operand of a pointer to member operator is an expression that has
side effects

struct s { int f(); };
int (S::*pmf)() • &S::f;
S *sp new S;
int i = 5;
int j = (sp->*(i+=5 , pmf)) ();

"file", line 5: not implemented: 2nd operand of .• too complicated

call of virtual function function before class has been
completely declared

class x
public :

private :

} ;

virtual x& f ();
int foo(x t = pt- >f());

static x* pt;
int i;

"file" , line 6: not i mplemented: call of virtual function x::f() before
class x has been completely declared - try moving call from argument list into
function body or make function non-virtual

C++ errors and warnings

·--········-----··-------·
c annot expand inline function function with for statement
in inline

A for statement appears in the defin ition of an in line function .

struct S {
int s[lOO];
S() { for (int i = 0; i < 100; i++) s[i] = i; }

} ;

"file", line 1: not implemented: cannot expand inline function s:: S() with for
statement in inline

cannot e xpand inline function function with statement
a fte r "r e turn"

A value-returning in l ine function contains a statement following a return
statement.

inline int f(int i) {
if (i) return i;
return 0;

" file" , line 4: not implemented: cannot expand inline function f () with
statement after "return"

c annot expand inline function function with two local
variables with the same name (name)

1\vo variables with the same name and different types are declared within the body
of a value-returning in l ine function.

inline int f(int i) {
{ int x = i; }
{ double x = i;
return 0;

"tile", line 5: not impl emented: cannot expand inline function f() with two
local variables with the same name (x)

341

'Not implemented' messages

342

cannot expand inline function needing temporary variable
of array type

An in l ine function that contains a local declaration of an array object is called.

inline int f(int i)
int a(1);
a[0 J = i;
return i;

int v = f(O);

"file", line 6: not implemented: cannot expand inline function needing
temporary variable of array type

c annot expand inline function with return in if statement

Th is message should not be produced

cannot expand inline function with static name

An inline function contains the declaration of a static object

inline void f() {
static int i = 5;

"file", line 2: not implemented: cannot expand inline function with static i

c a s t of non-integer constant

A cast of a non-integer constant as an actual parameter to a template class.

template <int i> class x;
int yy;

x< (int)&yy > xi;

"file", line 4: not implemented: cast of non- integer constant

cannot expand inline void function called in comma
e xpre ssion

A call of an inline void function that cannot be translated into an expression
(that is. one that includes a loop. a goto. or a swi tch statement) appears as the
first operand of a comma operator.

int i;
inline void f () { for (;;) ; }
void g(J {for (f(), i = 0; i < 10; i++);}

"file", line 3: not implemented: cannot expand inline void f() called in comma
expression

C++ errors and warnings
• w•• • • • w • • • --w---:ee• ._. ... - -

cannot expand inline void function called in for
expression

A call of an inline void function that cannot be trans lated into an expression
(that is. one that includes a loop, a goto. or a switch statement) appears in the
second expression of a for statement.

void in line f () { for (;;) ; } void g () { for (;; f ()) ; }

"file", line 2: not implemented: cannot expand inline void f() called in for
expression

cannot expand value-returning inline function with call
of ...

A va lue-return ing in line function is defined. and it conta ins a call to another in line
function that is not va lue-returning.

inline void f() { for(;;) ; }
in line int g () { f (); return 0; }

"file", line 2: not implemented: cannot expand value-returning inline g() with
call of non-value-returning inline f()

cannot merge lists of conversion functions

A derived class with multiple bases is declared and there are conversion operators
declared in more than one of the base classes.

struct Bl {
operator int();

} ;
struct B2 {

operator float();
} ;
struct D : public Bl, public B2 { } ;

"file", line 7: not implemented: cannot merge lists of conversion functions

catch

The keyword catch appears: catch is reserved for future use.

int catch;

"fi le", l ine 1: not implemented: catch
"file", line 1 : war ning: name expected in declaration list

class defined within sizeof

A class or union definition appears as the type name in a sizeof expression .

int i = sizeof (struct S { int i; });

"file", line 1 : not implemented : class defined within sizeof
"file", line 1 : error: S undefined, size not known

343

'Not implemented' messages

....-&&_W_-a:a:..._=================-IUII-- IIIfllllllllflllll _______ _

344

class hierarchy too complicated

Th is message should not be produced.

conditional expression with type

The second and third operands of a conditional expression are member funclions
or pointers to members.

struct 5 { i nt i, j; } ;
void f(int i) {

int 5: : •prni = i ? &S: : i : &S: : j;

"file", line 3: not implemented: conditional expression with int 5 :: *

constructor needed for argument initializer

The default value for an argument is a constructor or is an expression that invokes
a constructor.

struct 5 { 5(int); };
int f(5 = 5(1));
int g(5 = 5) ;

"file", line 2: not implemented: cons t ructor as default argument
"file", line 3: not i mple mented: constructor needed for argument initializer

copy of member[], no memberwise copy for class

An implementation-generated copy operation for a class xis required, but the
operation cannot be generated because x has an array member whose type is a
class with either a virtual base class or its own defined copy operation. The
workaround is to add a memberwise copy operator to x.
struct 51 {};
struct 52 : 51 {52& operator=(const 52&); };
struct X { 52 m(l); };
X varl;
X var2 = varl;

"file", line 5: no t implemented: copy of 52[] , no memberwise copy for 52

C++ errors and warnings

default argument too complicated

A default argument in a declaration not at file scope requires the generation of a
temporary.

struct S {
S();
int f(const int &r = 1);

} ;

"file", line 3: not implemented: default argument too complicated
"file", line 3 : not implemented: needs temporary variable to evaluate argument
initializer

ellipsis (...) in argument list of template function name

An ell ipsis is used in a temp late function declaration:

template <class T> f(T , ...);

"file", line 1: not implemented: ellipsis (...) in argument list of template
function f()

explicit template parameter list for destructor of
specialized template class name

Explicit template parameters are included in declaration of a specialised class·
destructor

template <class T> struct S { /• ... • / };

struct S<int> {
-S<int>() ;

} ;

"file", line 4: not implemented: explicit template parameter list for
destructor of specialized template class S <> -- please drop the parameter
list

Instead. declare the specialised destructor as fol lows

template <class T> struct s { /* ... •/ };

st.ruct S<int>
-S ();

} ;

formal type parameter name used as base class of template

The formal type parameter is used as the base class of a template class.

template <class T> struct S : public T {/* ... */};

"file", line 1: not implemented : formal type parameter T used as base class of
template

345

'Not implemented' messages

346

forward declaration of a specialized version of template
name

A forward declaration of a specialised. rather than genera li sed template:

template <class T> struct S; struct S<int>;

"file", line 2: not implemented: forward declaration of a specialized
version of template S <int >

general initializer in initializer list

The initialiser list in a declaration contains an expression that cannot easily be
evaluated at compi le time or that requires runtime evaluation.

int f();
int i[l) = { f() };

"file", line 2: not implemented: general initializer in initializer list

initialization of name (automatic aggregate)

An aggregate at loca l scope is initialised. This message is not issued if the +al
option (produces declarations acceptable to an ANSI C compi ler) is specified .

void f () {
int i[1] = {1};

"tile", line 2: not implemented: initialization of i (automatic aggregate)

initialization of union with initializer list

An object of union type is initialised with an initialiser list. This message is not
issued if the +al option (produces declarations acceptable to an ANSI C compiler)
is specified

union U { int i; float £; };
u u = {1};

"tile", line 2: not implemented: initialization of union with initializer list

initializer for class member array with constructor

This message should always be accompanied by an error message. The ·not
implemented' message is inappropriate and should not be reported.

initializer for local static too complicated

This message should not be produced.

C++ errors and warnings

-------------=-•-•n•~~:·------~,~~:Jtaua •-=

initializer for multi-dimensional array of objects of
class class with constructor name

A multi-dimensiona l array of a class with a constructor has an explicit in itialiscr.

struct S { S (int J ; } ;
s S[2)[2) = {1,2,3,4};

"file", line 2: not implemented: initializer for multi-dimensional array of
objects of class S with constructor ::s

implicit static initializer for multi-dimensional array
of objects of class with constructor

class x

public:

} ;

main()

x()

static x xx(10)[20);

"file", line 7: not impl emented: implicit static initializer for multi­
dimensional array of objects of class x with constructor

initializer list for local variable name

This message shou ld not be produced.

labe l in block with destructors

A label led statement appears in a block in which an object with a destructor exists.

struct S { S(int); - S(); };
void f () {

S s(S);
xyz:
}

"file", line 5: not implemented: label in block with destructors

347

'Not implemented' messages

348

local class name within template function

A local class is defined inside a template function. A similar message is issued for
local enums and local typedefs defined inside a template function

template <class T> f() {
class 1 {/* ... */};
enum E {/* ... */};
typedef int* ip;

} ;

"'file"', line 2: not implemented: local class 1 (l ocal to f()) within
template function
"'file"', line 3: not implemented: local enum E(local to f()) within template
function
"'file "' , line 4: not i mplemented: local typedef ip within template function

local static class name (type)

A static array of objects of a class with a constructor is declared at local scope

class S
public:

} ;
S();

void f () {
static S s(9);

"'file"', line 2: not implemented: local static class s (S (9])

local static name has clas s ::-class() but no cons tructor
(add class:: class ())

A slatic class object with a destructor. but no constructor. appears at local scope.

struct S { -S(); } ;
void f() { static S s; }

"'file"', line 1: warning: S has S::-S() but no constructor
"'file"', line 2: not implemented: local statics has S::-5() but no constructor

(add S : : S ())

!value op too compl i cated

This message should not be produced.

C++ errors and warnings

:Ill

needs temporary variable to evaluate argument initializer

A default argument requ ires a temporary variable.

void f () {

int g(const int& = 5);

"file", line 2: not implemented: needs temporary variable to evaluate argument
initializer

nested class type as parameter type to template class name

A nested class is used as the actual parameter for a template class instantiation:

template <class T> struct S;

struct outer {
struct inner {};

} ;

S<outer::inner> svar;

"file", line 7: not implemented : nested class outer::inner as parameter type
to template class S

nested class name within nested class name within
template class name

Classes may only be nested directly within template classes. classes within nested
classes with in template classes are not implemented

template <c lass T> class S {
class nestl {

} ;

class nest2 {/* ... */};
} ;

"file", line 3: not implemented: nested class S::nestl::nest2 within nested
class S::nestl within template class S

349

'Not implemented' messages

350

----·------
nested depth class beyond 9 unsupported

Classes are nested more than nine levels deep

struct 81 {
struct 82 {
struct 83 {
struct 84 {
struct 85 {
struct 86 {
struct 87 {
struct 88 {
struct S9 {
struct 810 { enum { e }; };

};};};};};};};};};

"file", line 20: not implemented: nested depth class beyond 9 unsupported

non-trivial declaration in switch statement

--·

A ·non-trivial· declaration appears within a switch statement. Such a declaration
might declare an object of reference type. a static object. a const object. an object
of a class type with constructor or destructor. an object with an in itia I iser I ist, or an
object initialised with a string litera l.

void f(int i) {
switch (i) {
default:

int& i ;

"file", line 2: not implemented: non-trivial declaration in switch statement
(try enclosing it in a block)

Note that since it is illega l to jump past a declaration with an explicit or implicit
initialiser un less the declaration is in an inner block that is not entered. most
declarations in switch statements and not contained in inner blocks will be
errors.

C++ errors and warnings

•--=•ww••---

out-of-line definition of member function of class nested
within template class

The member functions of a class nested within a template function must be
defined within the definition of the nested class.

template <class t> struct x {
struct y {void foo(); };
I I . ..

} ;

template <class t>
void x<t>::y::foo(){)

"file", line 7: not implemented: out- of-line definition of member function
of class nested \Vi thin template class (x: :y:: foo())

overly complex op of op

This message should not be produced

parameter e xpression of type float , double or long double

A template taking a non-type argument is declared taking a fioat. double or long
double argument

template <doubled> struct S { /* .. . */};

"file", line 1: not implemented: parameter expression of type float, double,
or long double

pos tfix template function operator++() : pleas e make a
c lass member function

The postfix implementalion of a lemplale incremenl or decrement operator must
be a member funclion.

template <class t> struct x {
int operator++(int); // ok

} ;

template <class t>
int operator++(x<t>&,int); // sorry

x<int> xi;

"file", "", line 6: not implemented: postfix template function operator
++() : please make a class member function

pointer to member function type too complicated

This message shou ld not be produced

351

'Not implemented' messages

352

public specification of overloaded function

The base class member in an access declaration refers to an overloaded function . A
similar message is issued for private and protected access declarations.

struct 8 { int f(); int f(int); };
class D : private B {
public:

B: : f;
};

"file", line 2: not implemented: public specification of overloaded 8: :£()

reuse of formal template parameter name

A template forma l parameter name is reused within the template declaration

template <class T> struct s {
int T;

} ;

"file", line 2: not impl emented : reuse of formal template parameter T

specialized template name not at global scope

A specialised template is declared at other than global scope

template <class T> struct S {
T var;

} ;

void f () {

};

struct S <int > {
int var;

} ;

"file", line 6: not implemented : specialized templateS not at global scope

static member anonymous union

A static class member is declared as an anonymous union

class C

} ;

static union {
int i;
double d ;

} ;

"file, line 5 : not implemented: static member anonymous union

struct name member name

This message should not be produced

C++ errors and warnings

-..-.. .-.. qg.-.. ~-.am~gm.a.n.a_..-~_.RE~a. .. .-.-.... .-.-~a a

template function actuals too complicated (please
simplify)

#include <iostream.h>

template <c l ass i> struct x { x(); };

template <class t>
ostream& operator<<(ostream &os, x<t>&) { return os; }

x<int> z;

main()
I*

* ok: simplified invocation of actual templ ate function:
cout <<"hello"; cout << z << endl;

*I

II generates sorry message: actuals too complicated
cout << "hello" << z << endl;

" file", line 17: not impl emented: template function operator << (): actuals too
complicated (pl ease simplify)

template function instantiated with local class name

template <class T> int f(T);

f2 () {
struct local {1* ... *1} ;
local lvar;
f(lvar) ;

"fi le", line 6 : not implemented : template function f() instantiated with local
class local

temporary of class name with destructor needed in expr
expression

An expression containing a? : , II , or && operator requires a temporary object of a
class that has a destructor.

struct S { S(int); -S() ; };
S f(int i) {

return i ? S(l) : 5(2)

"file", line 3: not implemented: temporary of class S with destructor needed
in ?: expression

353

'Not implemented' messages

354

too few initializers for name

The in itia l iser list for an array of class objects has fewer in itialisers than the
number of elements in the array.

struct S { S(int); S(); };
s a[2J = {1};

"file", line 2 : not implemented: too fe\~ initializers for ::a

typel assigned to type2 (too complicated)

A poinler is in itialised or assigned with an expression whose type is too
complicated.

struct Sl {};
struct 52 { int i; } ;
struct S3 : Sl, S2 {};
int S3::*pmi = &S2::i;

"file", line 4: not implemented: int S2::• assigned to int S3::* (too
complicated)

use of member with formal template parameter

An attempt to use a member of a formal parameter type, such as T : : typ e, is not
currently supported. For example.

template <class T> class u {
typedef T TU;
I I ...

} ;

template <class Type> class v {
Type : :TU t ·
I I ...

} ;

" file", line 9: not implemented: use of Type::TU with formal template type
parameter
" file", line 9: cannot recover from earlier errors

visibility declaration for conversion operator

An access declaration is specified for a conversion operator

struct B {operator int() ; };
class D : private B {
public:

B::operator int;
} ;

" file", line 1: not implemented: visibility declaration for conversion
operator

C++ errors and warnings

volatile functions

A member function is specified as volatile.

struct S {
int f() volatile;

} ;

"file", line 2: not implemented: volatile functions

wide character constant
wide character s tring

A wide character constant or a wide character string is used.

i nt we = L'ab';
char •ws = L"abcd";

"file", line 1: not implemented: •1ide character constant
"file", line 2: not implemented: "'ide character string

355

356

C function index
tWft5**51t*W***fi*S*#**•******WMaAPMM¥M*6WAM.W**¥W*W*'* WWM

Main entries are pri nted in bold type.

Symbols
_ heap_checking_on_all_allocates 142
_heap_checking_on_all_deallocates 142
_frnapstore 30. 142
_kernel_stkovf_split_Oframc 277
_kernel_stkovf_split_frarnc 277

kernel_swi 27 1
_mapstore 30. 33. 142

A
abort 83, 85, 125
abs 127
acos 83, 99
asctirne 138
asin 83, 99
assert 83
alan 99
atan2 83. 99
atexit 125
atof 121
atoi 121
atol 121

B
bscarch 126

c
cal loc 85. 124
cei l 99
clearerr 120
clock 85. 137
cos 99
cosh 99
ctime 139

D
difftirne 138
d iv 127

E
event_deregister_rnessage_handler 144, 148
event_deregistcr_toolbox_hand ler 144, 148
event_deregister_w imp_handler 144. 148
cvent_get_mask I 45
cvent_initialise 143, 145, 149
evenl_poll 143. 144, 146, 149
event_poll_idle 143. 146
event_register_message_handler 144. 148
evcnl_register_toolbox_handler 143. I 47
event_register_wimp_hand ler 143, 147
event_set_mask 143. 145. 146
exit 85. 125
exp 99

357

C function index

F
fabs 99
fclose I 07
teol 120

fcrror 120
fflush I 08
fgetc 114
fgetpos R4. I 18

fgets 114
floor 99
fmod 83. 99
fopcn 108
fprin tf 811. 110
fputc I 15
fpuls 11 5
frcad 11 7
free 124
freopen 109
frexp 99
fsca n f R4. I I 2
fscck 118
lsctpos 11 9
ftcll 811. 119
lwrilc 118

G
gelc 115
getchar 11 5
gctcnv 8'5. 126
gets 116
gmt imc 139

isalnurn 83 93
isalpha R3 93
iscntrl RJ 93
isd1g1l 93
isgraph 93

358

islower 93
islowert R3
isprint lB. 93
ispunct 83, 93
issp<KC 93
isupper 83. 93
isxdigit 93

L
irlbs 128
lconv 97
ldcxp 99
ldiv 128
loca lt imc 139
log 8'3. 99
logiO 83 99
longjmp 100

M
main 77. 26'3, 270
malloc 85. 124. 270
mblen 128
mbstowcs 130
mbtowc 129
memchr 134
memcmp 132
memcpy 131
memmove 131
mernset 136
mktimc 138
modf 99

p
perror 8'5. 120
pow 99
printf 87, Ill
pule 116

putchcH 116
puts 116

Q

R
rdl~c 102
rand 123
realloc 85. 124
remove 84, 106
rename 84 I 06
rewind 119

s
scanf 87. 11 3
set bur I 09
set jmp 100
~etloc<J i c 8 ~. 97
~ctvbur 110
~ignd l 1n. 84. 269
Sill 99
'>lllh 99
sprintr I 12 270
sqrt H3 99
srcJnd 123
sscant 113
strcal 132
slrchr 134,270
strcmp 133

strcoll 133
strcpy 131
strcspn 134
strerror 8'5. 136
strrumc 139
strlen 136
::trncat 132

strnnnp 133
strncpy 132

strpbrk 134
strrchr 135. 270
strspn 135
strstr 135
strtod 121
strtok 135
strtol 122
strtoul 122
struct tm 137
strxfrm 133
system 8 5. 126

T
tan 99
tdnh 99
time 138
tmpfilc I 07
tmpnam 107
lolower 93
too lbox initia lise 143, 145
loupper 93

u
ungetc 117

v
Vi-l_i-Hg I 03
Vi-l_Cild 104
Vi:l_lisl 103
va _start I 03
vfprintf 113
vprintf I 13
vsprinlf I 14

C function index

359

C function index

w
wcstombs 130
wctomb 12 9

wimp_add .messages 154

wimp_base_of_spntes I 54

wimp_block_copy 154
wimp_close_down 154

wimp close template 155

wimp_close_window 155

wimp_command_window 15 5

wimp_crcatc_icon 155
wimp_crcatc_mcnu 155

wimp_crcatc_submcnu 155

wimp_crcatc_wi ndow 156

wimp_dccodc_mcnu 156
wimp_delctc_icon 156
wimp_dclctc_window 156

wimp_drag_box I 56

wimp_force_rcdraw 15 7
wimp_get_caret_posltlon 15 7

wimp_geUcon_state 15 7

wimp __ get menu_state 15 7

wimp_get_pointer_info 157

wimp_get_rectangle 158

wimp_get_window_info 158

wimp_gel_window_outline 158

wimp_get_window state 158

wimp initialise 158
wimp_load template 159

wimp_open template 159

wimp_open window 159

wimp_plol_icon 15 9
wimp_poll 159
wimp_poll_idlc 160
wimp_process_key 160
wimp_ read pa lette 160

wimp_read .sys. info 160

wimp redrdw window 160

wimp remove messages 161

wi mp_report error 161
wimp_resize_icon 161

wimp_send_message 16 I

360

wimp_set_caret_position 162

wimp_set_colour 162

wimp_set_colour_mappmg 162

wimp_set_extent 162
wimp_set_font_colours 162

wimp_set_icon_state 163

wimp_set_modc 163
wimp_sct_palctte 163

wimp_set_pointer .shape 163

wimp_slot_size 164
wimp sprite op 164
wimp_start_task 164
wimp_lext_colour 164
wimp_text_op 164
wimp_transfer_block 165

wimp_update_window 165

wimp_which icon 165

X
xSstack_overnow 277
xSstack_overnow I 277

C++ class index

Main entries are printed in bold type

c
c_exception

cornplex_crror 247
ccrr 184
cin 184
clog 184
complex 244

- 252
• 253

253
+ 252
+ 253
I 253
I 253

253
253
253

abs 245
arg 245
con i 245
cos 255
cosh 255
cxp 250
irnag 246
log 250
norm 245
polar 246
pow 250
real 246
Sin 255
smh 255
sqrt 250

cout 184

-.::•-.--------------... ,. •: ..

F
filebuf 185 187

attach 189
close 189
fd 189
Hlcbuf 188
is_opcn 189
open 189
scekoff 189
scekpos 190
setbuf 190
sync 190

fstrearn 185. 19 1
attach I 93
close 193
fstr<>am 192
open 193
rdbut 194
setbuf 194

lAPP 213
ifstream 185, 191

attach 193
close 193
ifstrea m 192
open 193
rdbuf 194
setbuf 194

IMAI\IP 2 13
IOAPP 2 13
IOMANIP 213

361

C++ class index

ios 183 195
I 198
• 198

<< 204
>> 204
bad 198
bita lloc 202
clear 197
dec 199
eof 198
fail 198
fi ll 201
fixed 200
flags 201
good 198
hex 199
in it 197
interna l 199
ios 197
iword 203
left 199
oct 199
precision 20 I
pword 203
rdbuf 203
rdstate 197
right 199
scientific 200
setf 201
showbase 199
showpoint 200
showpos 199
skipws 199
std io 200
sync_with_std io 203
tie 203
unitbur 200
unsetf 202
uppercase 200
width 202
xalloc 202

362

iostream I 83
lostream init 184
iostream_withass1gn 184
istream 183, 206

>> 208, 212
gcount 211
get 210
getline 210
ignore 211
ipfx 208
istream 208
isl ream_withassign 208
manip 211
peek 211
putback 211
read 211
seekg 212
sync 211
tellg 212

istream_withassign 184
istrstream 186, 237

istrstream 238
rdbuf 238

M
main I 75
matherr 248

0
OAPP 213
ofstream I 85, 191

attach 193
close 193
ofstream 192
open 193
rdbuf 194
sctbuf 194

OMANIP 213

ostrcom 183 217
<< 220
dec 222
en<i1 222
ends 222
llu<;h 221 . 222
hex 222
monlp 221
oct 222
opfx 219
osfx 219
ostream 219
ostream_withassign 219
put 221
seekp 222
tellp 222
write 221

ostream w1thassign 184
ostrstream 186 237

ostrstream 238
pcount 239
rdbuf 239
str 239

s
SAPP 213
SMAN1P 213
stdiobuf 185 223
std1ostream 186
streambuf 183, 224, 232

allocate 228
base 226
bien 228
dbp 228
dm1 llocate 229. 230
eback 226
ebuf 226
egptr 226
epptr 226
gbump 228
gptr 227

in avail 234
out_wdit ing 234
overflow 229. 230
pbackfail 229. 230
pbase 227
pbump 228
pptr 227
sbumpc 234
seekoff 229. 231. 234
seekpos 229. 230. 234
setb 227
setbuf 230. 231 . 235
setg 227
setp 227
sgetc 235
sgctn 235
snextc 235
sputbackc 235
sputc 235
sputn 235
stossc 236
strcambuf 226
sync 230. 231 . 236
unbuffered 228
underflow 230.231

strstream 23 7
rdbuf 239
str 239
strstream 238

strstreambuf 185. 240
freeze 242
sctbuf 242
str 242
strstreambu f 241

C++ class index

363

364

------'iiNt .lll>lS$&1!1!1'111Siril·~~·11111:··· __.._....W&&** ** * •• U • •• II IIIII II I I -·-- -
Index

Symbols
#include 17. 18-22.23
:mem 20.21
tt 77

_ global_freg 90
_global_reg 90
_pure 90
_value_in_regs 89

A
absolute machine addresses 264
Acorn Desktop C 30 I
alignment 261
an 274, 275
ANSI library 14, 30, 141-142
ANSI standard 2. 7. II. 43. 69-85

vs K&R 262-266
APCS 43, 273
arguments 180

passing to assembler 275-276
arithmetic operations 74-75
arrays 80, 240-242, 265
asm declarations 178
assembly language 27'3-278
assert.h 92

8
bibliography 6-7
bitfields 81 , 179
BL 275

buffers 183. 185
characters 232-236
file 1/0 187- 190

buttons see application (button name)
byte ordering 260

c
C Module Header Generator see CMHG
CSLibroot 20, 22
CSPath 19. 23
C++ 11 -50

Assembler 18, 31
Auto run 4 1
Auto save 4 1
Cancel 13
command l ine '39. 42-46
Command line (menu option) 13, 25-26
Compile only 17, 18, 2'3
Debug 24
Default path 17, 20-22. 26
Define 27
Features 21.32-34
icon bar menu 4 1
Include 17. 19-21. 23
Module code '3 1
Options 41
Others 39
Run 13. 22.26
Save options 4 I
SetUp dialogue box 12- 13. 22-24
SetUp menu 13. 25-39
Source 12. 22-23
Suppress warnings 33, '34
Throwback 24

365

Index

Undehne 2R
Work directory I '5, ·~8

C++ library 14, I 8 1-2'56
C +Hello example 47

see also Hello\V example
cartesian coordinates 24'5-246
case <;erNtivity 42
CC 2. I I '50. 279

Assembler I 8. 11. 277
Auto run 41
Auto save <11
Cancel 13
commnnd line 'N. 42-46
Comm<H1d li rw (menu oplion) 13. 25-26
Compi le o nly 17, 18, 23
Debug 24
Debug opt ion c., 29
Def<JUit pal h 17, 20 22. 26
Dehne 27
Errors to h le n
Features 21. ·~o ·~2-·~4. 38
rcon bar menu 41
Include 17.19-21.2'3
Keep comments 27
Libraries '31
Listing 18. ·n. ·~x
Module code ·~I

Options 41
Others '30, 39
IJreprocess only 24, 40, 268
Profile ·m
l~un 1 '~. 22.26
Save opt ions 4 1
SetUp dirlloguc box 12- 1 '3. 22-24
SetUp menu 1'3, 25-'39
Source 12, 22-2'3
Suppress errors '36
Suppress warning<; ·n. 34- '35
Throwback 24
Undehne 2R
UNIX pee '37
Work directory 15. '38

366

CFront 2 I I, 4 5. 30 I
characters 78-79

testing and mapprng 93
chars 70
CHcllo example 47

see also HelloW exc~mplc
classes

members 179
multiple base 179

CMHC '51 54. 279-29<1
corn rna nd I i ne 54
Command line (rnenu oplion) 52
descriprion fi les 51, 282
icon bar menu '53
SetUp dia logue box 52
SetUp menu 52
Source 52

CModu le example 48
comments 263
common subexprec.,sion elirn rnation 88
compiler set' CC and C++
Complex Math library 24'~ 256

operators 2'52-254
complex numbers 244
condilionalised conditrons '30 I
const qualifier 26'3
constants

character 174
floating 174
hexadecimal 260
octa l 263

control statements 265
conventions 6
conversions 176, 177, 18'3 . 264
cpp 268

cross-jumping R7
ctype h 9'3, 268

cu rrent place 20-2 1

..........

0
data elements 70- 73

lim its 71-73.96
debugging

machine level 24
source level 24
tables 24, 29

declarations 265
declarators 82
device drivers 279
Dhrystone 2.1 example 48
diagnostics 92
dialogue boxes see application (dialogue box name)
doubles 70. 75
DrawFile module 169

E
EDOM 94, 248, 251
enumeration types 81
ERANGE 94. 248
errno.h 94. 269
errors 24, 36, 37, 40, 77, 197-198. 303-355

browser 24
Complex Math libra ry 247-249
domain 94
range 94

ESIGNUM 94
event handlers 143-144
Event library 14, 143-151
examples 47-50
exception handling 180
exponential functions 250-25 I
expressions I 76

evaluation 75

F
FILE 106
filenames 14-18

extensions I 6. 271
rooted I 6. 20

files
buffering 84
closing I 07
creal ing 189. 193
deleting I 06
flushing 108
formatted 1/0 18'5
naming 107
open ing 108-109. 189. 192. 193
position indicators I I 8- I 20
reading 187
renaming 106
seeking 189, I 93
syncing 190
temporary I 07
writing 187
zero-length 84

tlags 42-46
floath 95. 270
floating point 80. 95
floats 70. 75. 264
fn 274. 276
fp 27'5, 276
fpos_t 106
functions

arguments 262
calls I 76
declaration keywords 89-90
declarations 265
definitions 265
in-lin ing 301
prototypes 265
workspace 277

Index

367

Index

G
get area 226

H
headerfiles 11.15.19

ANSI 19
from CMHG 52

heap checking 142
HelloW example 12-13, 17
HUGE and HUGE_ VAL 269
Hyper example 50
hyperbolic functions 255-256

110
buffering 109-110
redirection 78

110 f u nclions I 06-120
icons see application (icon name)
identifiers 70. 78. 174
IEEE double precision 275
IEEE single precision 275
implementation limits 76
include files 17. 23. 26. 87

nesting 20-21
searching for 18-22

input fu nctions 112-113, 114. 115-116, 117
insta llation I
integers 80
interactive devices 77
ints 70
ip 274
ISO 8859- 1 79

K
kernel.h 19.271

368

L
Latin- I character set 79
LDM 46
l ibrari es 4, 14, 19. 23. 31.9 1- 169. 18 1-256

ANSI vs BSD UNIX 268-270
l imits h 96, 270
Link II. 23

Debug 24
linkage specifications 178
listings 18. 31, 33, 38, 277
locale h 97-98. 270
logarithmic functions 250-251
long doubles 70. 75. 263. 264
long noa ts 263
long ints 75
longs 70. 263
lr 274. 275

M
macros 180
Make 12, 15,16,43,51.57.62
manipu lators 213-2 16
math.h 99. 269
mathematical functions 83, 99. 127- 128
memory allocation functions 124
menus see application (menu namel
message handlers 144
M1nApp example 50
modules 31, 51, 279-294

application code 280, 283
components 280-28 1
constraints 280
event handler 281, 292-293
finalisation code 28 1,284
header 51
help and command keyword table 281.

286-288
help string 281. 286
mitialisation code 280. 283
IRO handlers 281. 291

library initialisation code 294
service call handler 281, 284-285
SWI chunk base number 281. 288
SWI decoding code 281. 289-290
SWI decoding table 281. 289
SWI handler code 281. 288-289
title string 281. 285
turning interrupts on and off 290

MS-DOS 16. 17. 271
multibyte character functions 128-129
multibyte string functions 130

0
object files II. 15. 17. 23. 41,54
offsetof I 05
operating system interface 126. 262. 270-271
operators

multiplicative 177
relational 177
shifts 177

optimisation 87-88
output 40-41 , 54, 58. 65
outputfunctions 110-112.113-114.115.116.118
overlays 295-297

alternatives to 296

p
paging 295
pathname separator 271
pc 275
pee 32. 37.42. 55-66. 88. 266-268
pointers 70. 74. 80.261.264

subtraction 74
polar coordinates 245-246
portability 259-271 . 297
portable C compiler see pee
power functions 250-251
pragmas 46, 64, 86-89

header file 19

Index

preprocessor II. 18. 24. 26-28. 33.44-45.87.
265, 268

directives 82
translation ordering 266
see also CC and C++

profiling 30, 142
program termination functions 125
ptrdiff_t I 05
put area 226

R
RAM filing system 296
random numbers 123
register storage class 81
register variables 88-89. 90
registers

names 274
usage 274-275

Render library 169
reserve area 226
resource files 16
RIS(_OSLib 30 I
rooted filenames see filenames (rooted)

s
search functions 126
setjmp.h 100
SetPaths 23
shared C library 14, 30.82-85. 91-140

modules 279
shorts 70
Sieve example 48
signal.h 101 - 102, 269
signals 94, 101 - 102
signed qualifier 263
size_t 105
sl 275. 276. 277
Software Interrupt see SWI
sort functions 127

369

Index

source files I I. I 5. I 6
sp 275,276.277
specifiers

storage class I 78
type 178

square root functions 250-25 I
SrcEdit 24
stack checking 43. 88
stack extension 277
stdarg h I 0'3-l 04
stddef.h I 05
stderr 78
stdin 78
stdio.h I 06- I 20, 270
stdl ib.h 121-130.270
stdout 78
STM 46
streams 184-185. I 95-205

formatting 198-203. 208-210 220-221
Streams library 181-242
string functions

appending 132
comparison I 32- I 33
conversion I 2 1- I 23
copying 131- 132
error message mapping 136
length I 34. I 35. I 36
locating I 34- I 35
time 1'39-140
tokenising I '35- I 36
transformation I '33- I 34

string literals 34. I 75. 263. 265
stringh 13 1-136.270
structures 73. 81. 89.261,263

resu lts 276
stubs 14. 30.9 1. 279.280

entry vectors 9 I
summary 40
SWI 271. 279
swish 19
switch statement 82. 265

370

T
TBoxCalc example 50
text streams 84
throwback 24. 43
limeh 137-140
ToANSI 55-59. 266

command line 59
Command line (menu option! 57
File 57
1con bar menu 58
SetUp dialogue box 57
SetUp menu 57

token-pasting 265
Toolbox 143, 153.301
Toolbox library 14. 167
tools 9-66

common features 41. 51. 55. 61
ToPCC 61-66.266

command line 66
Command line (menu option) 63
File 63
icon bar menu 64
Options 64
SetUp dia logue box 63
SetUp menu 63-64

translation limits I 73
trigonometric functions 255-256
TSR 279
types 175

checking 267
typographic conventions see conventions

u
unions 8 1. 263
UNIX 16. 17.21
unsigned long ints 264
unsigned qualifier 75, 263

v
varargs h I 9
variables

declaration keywords 90
lifet ime analysis 301
storing 277

variC:Idic functions 263
VII 275, 276
void 263
void' 263
volatile qual iher R2. R8. 26'3

w
wC:Irnings 34-35. 77. 303-355
wchar_t 105
Wimplibrary 14 153-165
work directory 15. 38. 43

Index

371

372

Reader's Comment Form
Acorn CIC++, Issue I

0484,232

We would greatly appreciate your comments about this Manual. which will be taken into account for the
next 1ssue

Did you flnd the information you wanted?

Do you like the way the information is presented?

General comments:

If there IS not enough room for your comments, please continue overleaf

How would you classify your experience with computers?

Used computers before Experienced User Programmer

Cut out (or p(wtocopy) at1d post to

Dept RC. Technical Publications
Acorn Computers Limited
Acorn I louse. Vision Park

Your name and address:

l l
Experienced Programmer

I Iiston. Cambridge CB4 4AE
England I

This information will only be used to get 1n touch with you in case we w1sh to explore your
comments further 1

